Local smooth solution and non-relativistic limit of radiation hydrodynamics equations.
We study the initial-boundary problem for a nonlinear system of wave equations with Hamilton structure under Dirichlet's condition. We use the local-in-time Strichartz estimates from [Burq et al., J. Amer. Math. Soc. 21 (2008), 831-845], Morawetz-Pohožaev's identity derived in [Miao and Zhu, Nonlinear Anal. 67 (2007), 3136-3151], and an a priori estimate of the solutions restricted to the boundary to show the existence of global and unique solutions.
The incompressible limit of the weak solutions to a fluid-particle interaction model is studied in this paper. By using the relative entropy method and refined energy analysis, we show that, for well-prepared initial data, the weak solutions of the compressible fluid-particle interaction model converge to the strong solution of the incompressible Navier-Stokes equations as long as the Mach number goes to zero. Furthermore, the desired convergence rates are also obtained.
The local maximal operator for the Schrödinger operators of order α > 1 is shown to be bounded from to L² for any s > 3/8. This improves the previous result of Sjölin on the regularity of solutions to fractional order Schrödinger equations. Our method is inspired by Bourgain’s argument in the case of α = 2. The extension from α = 2 to general α > 1 faces three essential obstacles: the lack of Lee’s reduction lemma, the absence of the algebraic structure of the symbol and the inapplicable...
Page 1