In this paper, we determine all trees with the property that adding a particular edge will result in exactly two Laplacian eigenvalues increasing respectively by 1 and the other Laplacian eigenvalues remaining fixed. We also investigate a situation in which the algebraic connectivity is one of the changed eigenvalues.
We discuss a general framework of monotone skew-product semiflows under a connected group action. In a prior work, a compact connected group -action has been considered on a strongly monotone skew-product semiflow. Here we relax the strong monotonicity and compactness requirements, and establish a theory concerning symmetry or monotonicity properties of uniformly stable 1-cover minimal sets. We then apply this theory to show rotational symmetry of certain stable entire solutions for a class of...
We prove an approximation lemma on (stratified) homogeneous groups that allows one to approximate a function in the non-isotropic Sobolev space by functions, generalizing a result of Bourgain–Brezis. We then use this to obtain a Gagliardo–Nirenberg inequality for on the Heisenberg group .
Let G be a mixed graph. We discuss the relation between the second largest eigenvalue λ₂(G) and the second largest degree d₂(G), and present a sufficient condition for λ₂(G) ≥ d₂(G).
A graph in a certain graph class is called minimizing if the least eigenvalue of its adjacency matrix attains the minimum among all graphs in that class. Bell et al. have identified a subclass within the connected graphs of order n and size m in which minimizing graphs belong (the complements of such graphs are either disconnected or contain a clique of size n/2 ). In this paper we discuss the minimizing graphs of a special class of graphs of order n whose complements are connected and contains...
Download Results (CSV)