The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 5 of 5

Showing per page

Order by Relevance | Title | Year of publication

Boundedness and stabilization in a three-dimensional two-species chemotaxis-Navier-Stokes system

Hirata, MisakiKurima, ShunsukeMizukami, MasaakiYokota, Tomomi — 2017

Proceedings of Equadiff 14

This paper is concerned with the two-species chemotaxis-Navier–Stokes system with Lotka–Volterra competitive kinetics ( 1 ) t + u · 1 = 𝔻 1 - χ 1 · ( 1 c ) + μ 1 1 ( 1 - 1 - a 1 2 ) in × ( 0 , ) , ( 2 ) t + u · 2 = 𝔻 2 - χ 2 · ( 2 c ) + μ 2 2 ( 1 - a 2 1 - 2 ) in × ( 0 , ) , c t + u · c = 𝔻 c - ( α 1 + β 2 ) c in × ( 0 , ) , u t + ( u · ) u = 𝔻 u + P + ( γ 1 + 2 ) Φ , · u = 0 in × ( 0 , ) under homogeneous Neumann boundary conditions and initial conditions, where is a bounded domain in R3 with smooth boundary. Recently, in the 2-dimensional setting, global existence and stabilization of classical solutions to the above system were first established. However, the 3-dimensional case has not been studied: Because of difficulties in the Navier–Stokes system, we can...

Boundedness of solutions to parabolic-elliptic chemotaxis-growth systems with signal-dependent sensitivity

Kentarou FujieTomomi Yokota — 2014

Mathematica Bohemica

This paper deals with parabolic-elliptic chemotaxis systems with the sensitivity function χ ( v ) and the growth term f ( u ) under homogeneous Neumann boundary conditions in a smooth bounded domain. Here it is assumed that 0 < χ ( v ) χ 0 / v k ( k 1 , χ 0 > 0 ) and λ 1 - μ 1 u f ( u ) λ 2 - μ 2 u ( λ 1 , λ 2 , μ 1 , μ 2 > 0 ) . It is shown that if χ 0 is sufficiently small, then the system has a unique global-in-time classical solution that is uniformly bounded. This boundedness result is a generalization of a recent result by K. Fujie, M. Winkler, T. Yokota.

Stabilization in degenerate parabolic equations in divergence form and application to chemotaxis systems

Sachiko IshidaTomomi Yokota — 2023

Archivum Mathematicum

This paper presents a stabilization result for weak solutions of degenerate parabolic equations in divergence form. More precisely, the result asserts that the global-in-time weak solution converges to the average of the initial data in some topology as time goes to infinity. It is also shown that the result can be applied to a degenerate parabolic-elliptic Keller-Segel system.

Cauchy problem for the complex Ginzburg-Landau type Equation with L p -initial data

Daisuke ShimotsumaTomomi YokotaKentarou Yoshii — 2014

Mathematica Bohemica

This paper gives the local existence of mild solutions to the Cauchy problem for the complex Ginzburg-Landau type equation u t - ( λ + i α ) Δ u + ( κ + i β ) | u | q - 1 u - γ u = 0 in N × ( 0 , ) with L p -initial data u 0 in the subcritical case ( 1 q < 1 + 2 p / N ), where u is a complex-valued unknown function, α , β , γ , κ , λ > 0 , p > 1 , i = - 1 and N . The proof is based on the L p - L q estimates of the linear semigroup { exp ( t ( λ + i α ) Δ ) } and usual fixed-point argument.

Page 1

Download Results (CSV)