Currently displaying 1 – 19 of 19

Showing per page

Order by Relevance | Title | Year of publication

A self-scaling memoryless BFGS based conjugate gradient method using multi-step secant condition for unconstrained minimization

Yongjin KimYunchol JongYong Kim — 2024

Applications of Mathematics

Conjugate gradient methods are widely used for solving large-scale unconstrained optimization problems, because they do not need the storage of matrices. Based on the self-scaling memoryless Broyden-Fletcher-Goldfarb-Shanno (SSML-BFGS) method, new conjugate gradient algorithms CG-DESCENT and CGOPT have been proposed by W. Hager, H. Zhang (2005) and Y. Dai, C. Kou (2013), respectively. It is noted that the two conjugate gradient methods perform more efficiently than the SSML-BFGS method. Therefore,...

On the computation of roll waves

Shi JinYong Jung Kim — 2001

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The phenomenon of roll waves occurs in a uniform open-channel flow down an incline, when the Froude number is above two. The goal of this paper is to analyze the behavior of numerical approximations to a model roll wave equation u t + u u x = u , u ( x , 0 ) = u 0 ( x ) , which arises as a weakly nonlinear approximation of the shallow water equations. The main difficulty associated with the numerical approximation of this problem is its linear instability. Numerical round-off error can easily overtake the numerical solution and yields false...

On the Computation of Roll Waves

Shi JinYong Jung Kim — 2010

ESAIM: Mathematical Modelling and Numerical Analysis

The phenomenon of roll waves occurs in a uniform open-channel flow down an incline, when the Froude number is above two. The goal of this paper is to analyze the behavior of numerical approximations to a model roll wave equation , which arises as a weakly nonlinear approximation of the shallow water equations. The main difficulty associated with the numerical approximation of this problem is its linear instability. Numerical round-off error can easily overtake the numerical solution and yields...

Global regularity for the 3D inhomogeneous incompressible Navier-Stokes equations with damping

Kwang-Ok LiYong-Ho Kim — 2023

Applications of Mathematics

This paper is concerned with the 3D inhomogeneous incompressible Navier-Stokes equations with damping. We find a range of parameters to guarantee the existence of global strong solutions of the Cauchy problem for large initial velocity and external force as well as prove the uniqueness of the strong solutions. This is an extension of the theorem for the existence and uniqueness of the 3D incompressible Navier-Stokes equations with damping to inhomogeneous viscous incompressible fluids.

Page 1

Download Results (CSV)