The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We introduce conformally flat Fefferman-Lorentz manifold of parabolic type as a special class of Lorentz parabolic manifolds. It is a smooth (2n+2)-manifold locally modeled on (Û(n+1, 1), S 2n+1,1). As the terminology suggests, when a Fefferman-Lorentz manifold M is conformally flat, M is a Fefferman-Lorentz manifold of parabolic type. We shall discuss which compact manifolds occur as a conformally flat Fefferman-Lorentz manifold of parabolic type.
An (m+2)-dimensional Lorentzian similarity manifold M is an affine flat manifold locally modeled on (G,ℝm+2), where G = ℝm+2 ⋊ (O(m+1, 1)×ℝ+). M is also a conformally flat Lorentzian manifold because G is isomorphic to the stabilizer of the Lorentzian group PO(m+2, 2) of the Lorentz model S m+1,1. We discuss the properties of compact Lorentzian similarity manifolds using developing maps and holonomy representations.
We define notion of a quaternionic and para-quaternionic CR structure on a (4n+3)-dimensional manifold M as a triple (ω1,ω2,ω3) of 1-forms such that the corresponding 2-forms satisfy some algebraic relations. We associate with such a structure an Einstein metric on M and establish relations between quaternionic CR structures, contact pseudo-metric 3-structures and pseudo-Sasakian 3-structures. Homogeneous examples of (para)-quaternionic CR manifolds are given and a reduction construction of non...
Download Results (CSV)