On quasi-Frobeniusean and Artinian rings.
Von Neumann regular rings, hereditary rings, semi-simple Artinian rings, self-injective regular rings are characterized. Rings which are either strongly regular or semi-simple Artinian are considered. Annihilator ideals and -regular rings are studied. Properties of WGP-injectivity are developed.
The following results are proved for a ring : (1) If is a fully right idempotent ring having a classical left quotient ring which is right quasi-duo, then is a strongly regular ring; (2) has a classical left quotient ring which is a finite direct sum of division rings iff is a left -ring having a reduced maximal right ideal and satisfying the maximum condition on left annihilators; (3) Let have the following properties: (a) each maximal left ideal of is either a two-sided ideal...
A new characteristic property of von Neumann regular rings is proposed in terms of annihilators of elements. An ELT fully idempotent ring is a regular ring whose simple left (or right) modules are either injective or projective. Artinian rings are characterized in terms of Noetherian rings. Strongly regular rings and rings whose two-sided ideals are generated by central idempotents are characterized in terms of special annihilators. Quasi-Frobeniusean rings are characterized in terms of -injectivity....
Characterizations of quasi-continuous modules and continuous modules are given. A non-trivial generalization of injectivity (distinct from -injectivity) is considered.
Page 1