Currently displaying 1 – 7 of 7

Showing per page

Order by Relevance | Title | Year of publication

Space-time continuous solutions to SPDE's driven by a homogeneous Wiener process

Zdzisław BrzeźniakSzymon Peszat — 1999

Studia Mathematica

Stochastic partial differential equations on d are considered. The noise is supposed to be a spatially homogeneous Wiener process. Using the theory of stochastic integration in Banach spaces we show the existence of a Markovian solution in a certain weighted L q -space. Then we obtain the existence of a space continuous solution by means of the Da Prato, Kwapień and Zabczyk factorization identity for stochastic convolutions.

A note on γ-radonifying and summing operators

Zdzisław BrzeźniakHongwei Long — 2015

Banach Center Publications

In this note, we discuss certain generalizations of γ-radonifying operators and their applications to the regularity for linear stochastic evolution equations on some special Banach spaces. Furthermore, we also consider a more general class of operators, namely the so-called summing operators and discuss the application to the compactness of the heat semi-group between weighted L p -spaces.

A quantitative asymptotic theorem for contraction semigroups with countable unitary spectrum

Charles BattyZdzisław BrzeźniakDavid Greenfield — 1996

Studia Mathematica

Let T be a semigroup of linear contractions on a Banach space X, and let X s ( T ) = x X : l i m s T ( s ) x = 0 . Then X s ( T ) is the annihilator of the bounded trajectories of T*. If the unitary spectrum of T is countable, then X s ( T ) is the annihilator of the unitary eigenvectors of T*, and l i m s T ( s ) x = i n f x - y : y X s ( T ) for each x in X.

Stochastic convolution in separable Banach spaces and the stochastic linear Cauchy problem

Zdzisław BrzeźniakJan van Neerven — 2000

Studia Mathematica

Let H be a separable real Hilbert space and let E be a separable real Banach space. We develop a general theory of stochastic convolution of ℒ(H,E)-valued functions with respect to a cylindrical Wiener process W t H t [ 0 , T ] with Cameron-Martin space H. This theory is applied to obtain necessary and sufficient conditions for the existence of a weak solution of the stochastic abstract Cauchy problem (ACP) d X t = A X t d t + B d W t H (t∈ [0,T]), X 0 = 0 almost surely, where A is the generator of a C 0 -semigroup S ( t ) t 0 of bounded linear operators on...

Continuity of stochastic convolutions

Zdzisław BrzeźniakSzymon PeszatJerzy Zabczyk — 2001

Czechoslovak Mathematical Journal

Let B be a Brownian motion, and let 𝒞 p be the space of all continuous periodic functions f with period 1. It is shown that the set of all f 𝒞 p such that the stochastic convolution X f , B ( t ) = 0 t f ( t - s ) d B ( s ) , t [ 0 , 1 ] does not have a modification with bounded trajectories, and consequently does not have a continuous modification, is of the second Baire category.

Stochastic evolution equations driven by Liouville fractional Brownian motion

Zdzisław BrzeźniakJan van NeervenDonna Salopek — 2012

Czechoslovak Mathematical Journal

Let H be a Hilbert space and E a Banach space. We set up a theory of stochastic integration of ( H , E ) -valued functions with respect to H -cylindrical Liouville fractional Brownian motion with arbitrary Hurst parameter 0 < β < 1 . For 0 < β < 1 2 we show that a function Φ : ( 0 , T ) ( H , E ) is stochastically integrable with respect to an H -cylindrical Liouville fractional Brownian motion if and only if it is stochastically integrable with respect to an H -cylindrical fractional Brownian motion. We apply our results to stochastic evolution equations...

Ergodicity for a stochastic geodesic equation in the tangent bundle of the 2D sphere

Ľubomír BaňasZdzisław BrzeźniakMikhail NeklyudovMartin OndrejátAndreas Prohl — 2015

Czechoslovak Mathematical Journal

We study ergodic properties of stochastic geometric wave equations on a particular model with the target being the 2D sphere while considering only solutions which are independent of the space variable. This simplification leads to a degenerate stochastic equation in the tangent bundle of the 2D sphere. Studying this equation, we prove existence and non-uniqueness of invariant probability measures for the original problem and obtain also results on attractivity towards an invariant measure. We also...

Page 1

Download Results (CSV)