The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 6 of 6

Showing per page

Order by Relevance | Title | Year of publication

Separable functors for the category of Doi Hom-Hopf modules

Shuangjian GuoXiaohui Zhang — 2016

Colloquium Mathematicae

Let ̃ ( k ) ( H ) A C be the category of Doi Hom-Hopf modules, ̃ ( k ) A be the category of A-Hom-modules, and F be the forgetful functor from ̃ ( k ) ( H ) A C to ̃ ( k ) A . The aim of this paper is to give a necessary and suffcient condition for F to be separable. This leads to a generalized notion of integral. Finally, applications of our results are given. In particular, we prove a Maschke type theorem for Doi Hom-Hopf modules.

Braided monoidal categories and Doi-Hopf modules for monoidal Hom-Hopf algebras

Shuangjian GuoXiaohui ZhangShengxiang Wang — 2016

Colloquium Mathematicae

We continue our study of the category of Doi Hom-Hopf modules introduced in [Colloq. Math., to appear]. We find a sufficient condition for the category of Doi Hom-Hopf modules to be monoidal. We also obtain a condition for a monoidal Hom-algebra and monoidal Hom-coalgebra to be monoidal Hom-bialgebras. Moreover, we introduce morphisms between the underlying monoidal Hom-Hopf algebras, Hom-comodule algebras and Hom-module coalgebras, which give rise to functors between the category of Doi Hom-Hopf...

Parametric representations of BiHom-Hopf algebras

Xiaohui ZhangWei WangJuzhen Chen — 2024

Czechoslovak Mathematical Journal

The main purpose of the present paper is to study representations of BiHom-Hopf algebras. We first introduce the notion of BiHom-Hopf algebras, and then discuss BiHom-type modules, Yetter-Dinfeld modules and Drinfeld doubles with parameters. We get some new n -monoidal categories via the category of BiHom-(co)modules and the category of BiHom-Yetter-Drinfeld modules. Finally, we obtain a center construction type theorem on BiHom-Hopf algebras.

Lipschitz constants for a hyperbolic type metric under Möbius transformations

Yinping WuGendi WangGaili JiaXiaohui Zhang — 2024

Czechoslovak Mathematical Journal

Let D be a nonempty open set in a metric space ( X , d ) with D . Define h D , c ( x , y ) = log 1 + c d ( x , y ) d D ( x ) d D ( y ) , where d D ( x ) = d ( x , D ) is the distance from x to the boundary of D . For every c 2 , h D , c is a metric. We study the sharp Lipschitz constants for the metric h D , c under Möbius transformations of the unit ball, the upper half space, and the punctured unit ball.

Page 1

Download Results (CSV)