Let be two non-negative integers. A left -module is called -injective, if for every -presented left -module . A right -module is called -flat, if for every -presented left -module . A left -module is called weakly --injective, if for every -presented left -module . A right -module is called weakly -flat, if for every -presented left -module . In this paper, we give some characterizations and properties of -injective modules and -flat modules in the cases...
Let be a weak torsion class of left -modules and a positive integer. A left -module is called -injective if for each -presented left -module ; a right -module is called -flat if for each -presented left -module ; a left -module is called -projective if for each -injective left -module ; the ring is called strongly -coherent if whenever is exact, where is -presented and is finitely generated projective, then is -projective; the ring is called -semihereditary...
We give some new characterizations of quasi-Frobenius rings by the generalized injectivity of rings. Some characterizations give affirmative answers to some open questions about quasi-Frobenius rings; and some characterizations improve some results on quasi-Frobenius rings.
Let be a ring. A subclass of left -modules is called a weak torsion class if it is closed under homomorphic images and extensions. Let be a weak torsion class of left -modules and a positive integer. Then a left -module is called -finitely generated if there exists a finitely generated submodule such that ; a left -module is called -presented if there exists an exact sequence of left -modules
such that are finitely generated free and is -finitely generated; a left -module...
Download Results (CSV)