An upwinding mixed finite element method for a mean field model of superconducting vortices
In this paper, we construct a combined upwinding and mixed finite element method for the numerical solution of a two-dimensional mean field model of superconducting vortices. An advantage of our method is that it works for any unstructured regular triangulation. A simple convergence analysis is given without resorting to the discrete maximum principle. Numerical examples are also presented.
The phase relaxation model is a diffuse interface model with small parameter which consists of a parabolic PDE for temperature and an ODE with double obstacles for phase variable . To decouple the system a semi-explicit Euler method with variable step-size is used for time discretization, which requires the stability constraint . Conforming piecewise linear finite elements over highly graded simplicial meshes with parameter are further employed for space discretization. error estimates...
Page 1