The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 5 of 5

Showing per page

Order by Relevance | Title | Year of publication

An upwinding mixed finite element method for a mean field model of superconducting vortices

Zhiming ChenQiang Du — 2010

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper, we construct a combined upwinding and mixed finite element method for the numerical solution of a two-dimensional mean field model of superconducting vortices. An advantage of our method is that it works for any unstructured regular triangulation. A simple convergence analysis is given without resorting to the discrete maximum principle. Numerical examples are also presented.

Error Control and Andaptivity for a Phase Relaxation Model

Zhiming ChenRicardo H. NochettoAlfred Schmidt — 2010

ESAIM: Mathematical Modelling and Numerical Analysis

The phase relaxation model is a diffuse interface model with small parameter which consists of a parabolic PDE for temperature and an ODE with double obstacles for phase variable . To decouple the system a semi-explicit Euler method with variable step-size is used for time discretization, which requires the stability constraint . Conforming piecewise linear finite elements over highly graded simplicial meshes with parameter are further employed for space discretization. error estimates...

Page 1

Download Results (CSV)