The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Let be a commutative ring and a given multiplicative set. Let be a strictly ordered monoid satisfying the condition that for every . Then it is shown, under some additional conditions, that the generalized power series ring is -Noetherian if and only if is -Noetherian and is finitely generated.
In this paper, we study the existence of the -flat preenvelope and the -FP-injective cover. We also characterize -coherent rings in terms of the -FP-injective and -flat modules.
A ring is called a left APP-ring if the left annihilator is right -unital as an ideal of for any element . We consider left APP-property of the skew formal power series ring where is a ring automorphism of . It is shown that if is a ring satisfying descending chain condition on right annihilators then is left APP if and only if for any sequence of elements of the ideal
is right -unital. As an application we give a sufficient condition under which the ring...
Download Results (CSV)