Let be a commutative ring and a given multiplicative set. Let be a strictly ordered monoid satisfying the condition that for every . Then it is shown, under some additional conditions, that the generalized power series ring is -Noetherian if and only if is -Noetherian and is finitely generated.
A ring is called a left APP-ring if the left annihilator is right -unital as an ideal of for any element . We consider left APP-property of the skew formal power series ring where is a ring automorphism of . It is shown that if is a ring satisfying descending chain condition on right annihilators then is left APP if and only if for any sequence of elements of the ideal
is right -unital. As an application we give a sufficient condition under which the ring...
In this paper, we study the existence of the -flat preenvelope and the -FP-injective cover. We also characterize -coherent rings in terms of the -FP-injective and -flat modules.
Download Results (CSV)