On the Ricci tensor of real hypersurfaces of quaternionic projective space.
In this paper three dimensional real hypersurfaces in non-flat complex space forms whose k-th Cho operator with respect to the structure vector field ξ commutes with the structure Jacobi operator are classified. Furthermore, it is proved that the only three dimensional real hypersurfaces in non-flat complex space forms, whose k-th Cho operator with respect to any vector field X orthogonal to structure vector field commutes with the structure Jacobi operator, are the ruled ones. Finally, results...
In this paper we prove a non-existence of real hypersurfaces in complex hyperbolic two-plane Grassmannians SU2.m/S(U2·Um), m≥3, whose structure tensors {ɸi}i=1,2,3 commute with the shape operator.
We introduce the new notion of pseudo--parallel real hypersurfaces in a complex projective space as real hypersurfaces satisfying a condition about the covariant derivative of the structure Jacobi operator in any direction of the maximal holomorphic distribution. This condition generalizes parallelness of the structure Jacobi operator. We classify this type of real hypersurfaces.
In this paper we classify real hypersurfaces with constant totally real bisectional curvature in a non flat complex space form , as those which have constant holomorphic sectional curvature given in [6] and [13] or constant totally real sectional curvature given in [11].
We study classifying problems of real hypersurfaces in a complex two-plane Grassmannian . In relation to the generalized Tanaka-Webster connection, we consider that the generalized Tanaka-Webster derivative of the normal Jacobi operator coincides with the covariant derivative. In this case, we prove complete classifications for real hypersurfaces in satisfying such conditions.
This paper consists of two parts. In the first, we find some geometric conditions derived from the local symmetry of the inverse image by the Hopf fibration of a real hypersurface in complex space form . In the second, we give a complete classification of real hypersurfaces in which satisfy the above geometric facts.
We characterize real hypersurfaces with constant holomorphic sectional curvature of a non flat complex space form as the ones which have constant totally real sectional curvature.
We study the classifying problem of immersed submanifolds in Hermitian symmetric spaces. Typically in this paper, we deal with real hypersurfaces in a complex two-plane Grassmannian which has a remarkable geometric structure as a Hermitian symmetric space of rank 2. In relation to the generalized Tanaka-Webster connection, we consider a new concept of the parallel normal Jacobi operator for real hypersurfaces in and prove non-existence of real hypersurfaces in with generalized Tanaka-Webster...
Page 1