Une caractérisation spectrale des nilvariétés
On montre l’équivalence entre l’hyperbolicité au sens de Gromov de la géométrie de Hilbert d’un domaine convexe du plan et la non nullité du bas du spectre de ce domaine.
On montre que la géométrie de Hilbert d’un domaine convexe de est à géométrie locale bornée c-à-d que pour un rayon fixé, toutes les boules sont bilipschitz à un domaine de euclidien. On en déduit que si la géométrie de Hilbert est hyperbolique au sens de Gromov, alors le bas de son spectre est strictement positif. On donne un contre-exemple en dimension trois qui montre que la réciproque n’est pas vraie pour les géométries de Hilbert non planes.
Page 1