Petites valeurs propres et classe d’Euler des S 1 - fibrés

Bruno Colbois; Gilles Courtois

Annales scientifiques de l'École Normale Supérieure (2000)

  • Volume: 33, Issue: 5, page 611-645
  • ISSN: 0012-9593

How to cite

top

Colbois, Bruno, and Courtois, Gilles. "Petites valeurs propres et classe d’Euler des $S1-$ fibrés." Annales scientifiques de l'École Normale Supérieure 33.5 (2000): 611-645. <http://eudml.org/doc/82529>.

@article{Colbois2000,
author = {Colbois, Bruno, Courtois, Gilles},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {eigenvalue; differential form; Euler class},
language = {fre},
number = {5},
pages = {611-645},
publisher = {Elsevier},
title = {Petites valeurs propres et classe d’Euler des $S1-$ fibrés},
url = {http://eudml.org/doc/82529},
volume = {33},
year = {2000},
}

TY - JOUR
AU - Colbois, Bruno
AU - Courtois, Gilles
TI - Petites valeurs propres et classe d’Euler des $S1-$ fibrés
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2000
PB - Elsevier
VL - 33
IS - 5
SP - 611
EP - 645
LA - fre
KW - eigenvalue; differential form; Euler class
UR - http://eudml.org/doc/82529
ER -

References

top
  1. [1] BESSE A.L., Einstein Manifolds, Ergebnisse der Math. und ihrer Grenzgebiete Band 10, Springer-Verlag, Berlin-Heidelberg-New York, 1987. Zbl0613.53001MR88f:53087
  2. [2] BOTT R., TU L. W., Differential Form in Algebraic Topology, Graduate Texts in Mathematics 82, Springer-Verlag, 1982. Zbl0496.55001MR83i:57016
  3. [3] CHANILLO S., TRÈVES F., On the lowest eigenvalue of the Hodge Laplacian, J. Differential Geom. 45 (2) (1997) 273-287. Zbl0874.58087MR98i:58236
  4. [4] CHEEGER J., FUKAYA K., GROMOV M., Nilpotent structures and invariant metrics on collapsed manifolds, J. Amer. Math. Soc. 5, 327-372. Zbl0758.53022MR93a:53036
  5. [5] CHEEGER J., GROMOV M., Collapsing Riemannian manifolds while keeping their curvature bounded I, J. Differential Geom. 23 (1986) 309-346. Zbl0606.53028MR87k:53087
  6. [6] CHEEGER J., GROMOV M., Collapsing Riemannian manifolds while keeping their curvature bounded I, II, J. Differential Geom. 32 (1990) 269-298. Zbl0727.53043MR92a:53066
  7. [7] COLIN DE VERDIÈRE Y., Sur la multiplicité de la première valeur propre non nulle du Laplacien, Comment. Math. Helv. 61 (1986) 254-270. Zbl0607.53028MR88b:58140
  8. [8] COLBOIS B., COLIN DE VERDIÈRE Y., Sur la multiplicité d'une surface de Riemann, Comment. Math. Helv. 63 (1988) 194-208. Zbl0656.53043MR90c:58182
  9. [9] COLBOIS B., COURTOIS G., A note on the first non-zero eigenvalue of the Laplacian acting on p-forms, Manuscr. Math. 68 (1990) 143-160. Zbl0709.53031MR91g:58290
  10. [10] COURTOIS G., Spectrum of manifolds with holes, J. Funct. Anal. 134 (1) (1995) 194-221. Zbl0847.58076MR97b:58142
  11. [11] DAI X., Adiabatic limits, non-multiplicativity of signature and Leray spectral sequence, J. Amer. Math. Soc. 4 (2) (1991) 265-321. Zbl0736.58039MR92f:58169
  12. [12] DODZIUK J., Eigenvalues of the Laplacian on forms, Proc. Amer. Math. Soc. 85 (1982) 438-443. Zbl0502.58038MR84k:58223
  13. [13] FORMAN R., Spectral sequences and adiabatic limits, Comm. Math. Phys. 168 (1) (1995) 57-116. Zbl0827.58001MR96g:58176
  14. [14] FORMAN R., Hodge theory and spectral sequences, Topology 33 (3) (1994) 591-611. Zbl0816.55004MR95j:58160
  15. [15] FUKAYA K., Collapsing Riemannian manifolds to ones of lower dimension, J. Differential Geom. 25 (1987) 139-156. Zbl0606.53027MR88b:53050
  16. [16] FUKAYA K., Collapsing Riemannian manifolds and eigenvalues of the Laplace operator, Invent. Math. 87 (1987) 517-547. Zbl0589.58034MR88d:58125
  17. [17] GROMOV M., Paul Levy's isoperimetric inequality, Institut des Hautes Études Sci., Bures-sur-Yvette, France, 1980, Preprint. 
  18. [18] GROMOV M., Curvature diameter and Betti numbers, Comment. Math. Helv. 56 (1981) 179-195. Zbl0467.53021MR82k:53062
  19. [19] LI P., On the Sobolev constant and the p-spectrum of a compact Riemannian manifold, Ann. Sci. Éc. Norm. Sup. 13 (1980) 451-469. Zbl0466.53023MR82h:58054
  20. [20] LI P., YAU S.T., Eigenvalues of a compact Riemannian manifold, in : Proceedings Symposium on Pure Math., 1980, pp. 205-239. Zbl0441.58014MR81i:58050
  21. [21] MAZZEO R., MELROSE R., The adiabatic limit, Hodge cohomology and Leray's spectral sequence for a fibration, J. Differential Geom. 31 (1990) 185-213. Zbl0702.58007MR90m:58004
  22. [22] WARNER F.W., Foundations of Differential Manifolds and Lie Groups, Scott, Foresman and Company Glenview, London, 1971. Zbl0241.58001

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.