Currently displaying 1 – 20 of 101

Showing per page

Order by Relevance | Title | Year of publication

Sur les continus de Jordan et le théorème de M. Brouwer

Casimir Kuratowski — 1926

Fundamenta Mathematicae

Dans la première partie de cette note l'auteur établit une condition nécessaire et suffisante pour qu'un continu soit un continu de Jordan. Dans la seconde, il établit une condition suffisante et nécessaire pour qu'un continu de Jordan borne coupe le plan et puis dans la troisième partie il prouve que dans le hypothèses très générales concernant l'espace considéré (continu de Jordan plan et borne), le théorème de Brouwer équivaut au théorème suivant: Théorème: Si l'on décompose l'espace en deux...

Une remarque sur les classes de M. Fréchet

Casimir Kuratowski — 1922

Fundamenta Mathematicae

Le but de cette note est de résoudre le problème: Problème: Dans une note "Sur l'équivalence de trois propriétés des ensembles abstraits" Sierpiński s'occupe des relations entre les propriétés suivantes de classes (ℒ): α) toute infinité bien ordonnée d'ensembles fermes croissants est dénombrable; β) toute infinité bien ordonnée d'ensembles fermes décroissants est dénombrable; γ) tout ensemble infini E d'éléments de la classe considérée contient un sous-ensemble dénombrable D dense en E; δ) tout...

Sur l'opération Ā de l'Analysis Situs

Casimir Kuratowski — 1922

Fundamenta Mathematicae

1 désigne l'espace euclidien à n dimensions. A étant un ensemble quelconque de points de cet espace, 1-A désignent l'ensemble complémentaire de A. Ā se compose des points de A et de leurs points limites. On montre aisément que les énoncés suivantes subsistent: I bar(A+B) = Ā + bar(B) II A ⊂ Ā III bar(0) = 0 IV bar(Ā) = Ā Cette note est consacrée à l'analyse de ces propositions et de leurs conséquences.

Page 1 Next

Download Results (CSV)