Soit un espace de Banach de dual topologique . (resp. ) désigne l’ensemble des parties non vides convexes fermées de (resp. -fermées de ) muni de la topologie de la convergence uniforme sur les bornés des fonctions distances. Cette topologie se réduit à celle de la métrique de Hausdorff sur les convexes fermés bornés [16] et admet en général une représentation en terme de cette dernière [11]. De plus, la métrique qui lui est associée s’est révélée très adéquate pour l’étude quantitative...
Let be a Banach space and
its continuous dual. (resp. ) denotes the set of nonempty convex closed subsets of (resp. ω*-closed subsets of ) endowed with the topology
of uniform convergence of distance functions on bounded sets. This topology
reduces to the Hausdorff metric topology on the closed and bounded convex
sets [16] and in general has a Hausdorff-like presentation [11]. Moreover,
this topology is well suited for estimations and constructive approximations [6-9].
We prove here, that...
Il est démontré par Mentagui [ESAIM : COCV 9 (2003) 297-315] que, dans le cas des espaces de Banach généraux, la convergence d’Attouch-Wets est stable par une classe d’opérations classiques de l’analyse convexe, lorsque les limites des suites d’ensembles et de fonctions satisfont certaines conditions de qualification naturelles. Ceci tombe en défaut avec la slice convergence. Dans cet article, nous établissons des conditions de qualification uniformes assurant la stabilité de la slice convergence...
Il est démontré par Mentagui [
(2003) 297-315] que,
dans le cas des espaces de Banach généraux, la convergence
d'Attouch-Wets est stable par une classe d'opérations classiques de
l'analyse convexe, lorsque les limites des suites d'ensembles et de
fonctions satisfont certaines conditions de qualification naturelles. Ceci
tombe en défaut avec la slice convergence. Dans cet article, nous
établissons des conditions de qualification uniformes assurant la
stabilité de la slice convergence...
Download Results (CSV)