Currently displaying 1 – 9 of 9

Showing per page

Order by Relevance | Title | Year of publication

Modulation space estimates for Schrödinger type equations with time-dependent potentials

Wei Wei — 2014

Czechoslovak Mathematical Journal

We give a new representation of solutions to a class of time-dependent Schrödinger type equations via the short-time Fourier transform and the method of characteristics. Moreover, we also establish some novel estimates for oscillatory integrals which are associated with the fractional power of negative Laplacian ( - Δ ) κ / 2 with 1 κ 2 . Consequently the classical Hamiltonian corresponding to the previous Schrödinger type equations is studied. As applications, a series of new boundedness results for the corresponding...

Novel method for generalized stability analysis of nonlinear impulsive evolution equations

JinRong WangYong ZhouWei Wei — 2012

Kybernetika

In this paper, we discuss some generalized stability of solutions to a class of nonlinear impulsive evolution equations in the certain piecewise essentially bounded functions space. Firstly, stabilization of solutions to nonlinear impulsive evolution equations are studied by means of fixed point methods at an appropriate decay rate. Secondly, stable manifolds for the associated singular perturbation problems with impulses are compared with each other. Finally, an example on initial boundary value...

High-order fractional partial differential equation transform for molecular surface construction

Langhua HuDuan ChenGuo-Wei Wei — 2013

Molecular Based Mathematical Biology

Fractional derivative or fractional calculus plays a significant role in theoretical modeling of scientific and engineering problems. However, only relatively low order fractional derivatives are used at present. In general, it is not obvious what role a high fractional derivative can play and how to make use of arbitrarily high-order fractional derivatives. This work introduces arbitrarily high-order fractional partial differential equations (PDEs) to describe fractional hyperdiffusions. The fractional...

A topological approach for protein classification

Zixuan CangLin MuKedi WuKristopher OpronKelin XiaGuo-Wei Wei — 2015

Molecular Based Mathematical Biology

Protein function and dynamics are closely related to its sequence and structure.However, prediction of protein function and dynamics from its sequence and structure is still a fundamental challenge in molecular biology. Protein classification, which is typically done through measuring the similarity between proteins based on protein sequence or physical information, serves as a crucial step toward the understanding of protein function and dynamics. Persistent homology is a new branch of algebraic...

Page 1

Download Results (CSV)