Displaying similar documents to “Uniqueness and factorization of Coleff-Herrera currents”

A result on extension of C.R. functions

Makhlouf Derridj, John Erik Fornaess (1983)

Annales de l'institut Fourier

Similarity:

Let Ω an open set in C 4 near z 0 Ω , λ a suitable holomorphic function near z 0 . If we know that we can solve the following problem (see [M. Derridj, Annali. Sci. Norm. Pisa, Série IV, vol. IX (1981)]) : u = λ f , ( f is a ( 0 , 1 ) form, closed in U ( z 0 ) in U ( z 0 ) with supp ( u ) Ω U ( z 0 ) , then we deduce an extension result for C . R . functions on Ω U ( z 0 ) , as holomorphic fonctions in Ω V ( z 0 ) .

On extensions of holomorphic functions satisfying a polynomial growth condition on algebraic varieties in 𝐂 n

Jean Erik Björk (1974)

Annales de l'institut Fourier

Similarity:

Let V be an algebraic variety in C n and when k 0 is an integer then Pol ( V , k ) denotes all holomorphic functions f ( z ) on V satisfying | f ( z ) | C f ( 1 + | z | ) k for all z V and some constant C f . We estimate the least integer ϵ ( V , k ) such that every f Pol ( V , k ) admits an extension from V into C n by a polynomial P ( z 1 , ... , z n ) , of degree k + ϵ ( V , k ) at most. In particular lim k > ϵ ( V , k ) is related to cohomology groups with coefficients in coherent analytic sheaves on V . The existence of the finite integer ϵ ( V , k ) is for example an easy consequence of Kodaira’s Vanishing Theorem. ...

An elementary proof of the Briançon-Skoda theorem

Jacob Sznajdman (2010)

Annales de la faculté des sciences de Toulouse Mathématiques

Similarity:

We give an elementary proof of the Briançon-Skoda theorem. The theorem gives a criterionfor when a function φ belongs to an ideal I of the ring of germs of analytic functions at 0 n ; more precisely, the ideal membership is obtained if a function associated with φ and I is locally square integrable. If I can be generated by m elements,it follows in particular that I min ( m , n ) ¯ I , where J ¯ denotes the integral closure of an ideal J .

An extension theorem for separately holomorphic functions with analytic singularities

Marek Jarnicki, Peter Pflug (2003)

Annales Polonici Mathematici

Similarity:

Let D j k j be a pseudoconvex domain and let A j D j be a locally pluriregular set, j = 1,...,N. Put X : = j = 1 N A × . . . × A j - 1 × D j × A j + 1 × . . . × A N k + . . . + k N . Let U be an open connected neighborhood of X and let M ⊊ U be an analytic subset. Then there exists an analytic subset M̂ of the “envelope of holomorphy” X̂ of X with M̂ ∩ X ⊂ M such that for every function f separately holomorphic on X∖M there exists an f̂ holomorphic on X̂∖M̂ with f ̂ | X M = f . The result generalizes special cases which were studied in [Ökt 1998], [Ökt 1999], [Sic 2001], and [Jar-Pfl 2001]. ...

Variations of complex structures on an open Riemann surface

M. S. Narasimhan (1961)

Annales de l'institut Fourier

Similarity:

Soit U 1 un ouvert dans C m . Soit π 1 : S U 1 une famille holomorphe de structures complexes sur une surface de Riemann non-compacte M , avec S t 0 = π 1 - 1 ( t 0 ) = M . ( S = S ( M × U 1 ) est une structure complexe sur le produit différentiable M × U 1 ). Soit M 1 un domaine relativement compact dans M . On démontre : pour tout voisinage de Stein U de t 0 , assez petit, la famille π 1 : S ( M 1 × U ) U est isomorphe à la famille π : Ω π ( Ω ) , où Ω est un de la variété produit M × C m , π étant la projection M × C m C m . On donne aussi un résultat analogue pour le cas des variations différentiables. ...

A general version of the Hartogs extension theorem for separately holomorphic mappings between complex analytic spaces

Viêt-Anh Nguyên (2005)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Similarity:

Using recent development in Poletsky theory of discs, we prove the following result: Let X , Y be two complex manifolds, let Z be a complex analytic space which possesses the Hartogs extension property, let A (resp. B ) be a non locally pluripolar subset of X (resp. Y ). We show that every separately holomorphic mapping f : W : = ( A × Y ) ( X × B ) Z extends to a holomorphic mapping f ^ on W ^ : = ( z , w ) X × Y : ω ˜ ( z , A , X ) + ω ˜ ( w , B , Y ) < 1 such that f ^ = f on W W ^ , where ω ˜ ( · , A , X ) (resp. ω ˜ ( · , B , Y ) ) is the plurisubharmonic measure of A (resp. B ) relative to X (resp. Y ). Generalizations...