Displaying similar documents to “The Hilbert scheme of space curves of small diameter”

Obstructions to deforming curves on a 3 -fold, II: Deformations of degenerate curves on a del Pezzo 3 -fold

Hirokazu Nasu (2010)

Annales de l’institut Fourier

Similarity:

We study the Hilbert scheme Hilb s c V of smooth connected curves on a smooth del Pezzo 3 -fold V . We prove that any degenerate curve C , any curve C contained in a smooth hyperplane section S of V , does not deform to a non-degenerate curve if the following two conditions are satisfied: (i) χ ( V , C ( S ) ) 1 and (ii) for every line on S such that C = , the normal bundle N / V is trivial (  N / V 𝒪 1 2 ). As a consequence, we prove an analogue (for Hilb s c V ) of a conjecture of J. O. Kleppe, which is concerned with non-reduced components...

Computing limit linear series with infinitesimal methods

Laurent Evain (2007)

Annales de l’institut Fourier

Similarity:

Alexander and Hirschowitz determined the Hilbert function of a generic union of fat points in a projective space when the number of fat points is much bigger than the greatest multiplicity of the fat points. Their method is based on a lemma which determines the limit of a linear system depending on fat points approaching a divisor. Other Hilbert functions were computed previously by Nagata. In connection with his counter-example to Hilbert’s fourteenth problem, Nagata determined...

The Drinfeld Modular Jacobian J 1 ( n ) has connected fibers

Sreekar M. Shastry (2007)

Annales de l’institut Fourier

Similarity:

We study the integral model of the Drinfeld modular curve X 1 ( n ) for a prime n 𝔽 q [ T ] . A function field analogue of the theory of Igusa curves is introduced to describe its reduction mod n . A result describing the universal deformation ring of a pair consisting of a supersingular Drinfeld module and a point of order n in terms of the Hasse invariant of that Drinfeld module is proved. We then apply Jung-Hirzebruch resolution for arithmetic surfaces to produce a regular model of X 1 ( n ) which, after contractions...

Codimension 3 Arithmetically Gorenstein Subschemes of projective N -space

Robin Hartshorne, Irene Sabadini, Enrico Schlesinger (2008)

Annales de l’institut Fourier

Similarity:

We study the lowest dimensional open case of the question whether every arithmetically Cohen–Macaulay subscheme of N is glicci, that is, whether every zero-scheme in 3 is glicci. We show that a general set of n 56 points in 3 admits no strictly descending Gorenstein liaison or biliaison. In order to prove this theorem, we establish a number of important results about arithmetically Gorenstein zero-schemes in 3 .