Displaying similar documents to “Invariance for multiples of the twisted canonical bundle”

A lossless reduction of geodesics on supermanifolds to non-graded differential geometry

Stéphane Garnier, Matthias Kalus (2014)

Archivum Mathematicum

Similarity:

Let = ( M , 𝒪 ) be a smooth supermanifold with connection and Batchelor model 𝒪 Γ Λ E * . From ( , ) we construct a connection on the total space of the vector bundle E M . This reduction of is well-defined independently of the isomorphism 𝒪 Γ Λ E * . It erases information, but however it turns out that the natural identification of supercurves in (as maps from 1 | 1 to ) with curves in E restricts to a 1 to 1 correspondence on geodesics. This bijection is induced by a natural identification of initial conditions for...

Numerical character of the effectivity of adjoint line bundles

Frédéric Campana, Vincent Koziarz, Mihai Păun (2012)

Annales de l’institut Fourier

Similarity:

In this note we show that, for any log-canonical pair ( X , Δ ) , K X + Δ is -effective if its Chern class contains an effective -divisor. Then, we derive some direct corollaries.

Low pole order frames on vertical jets of the universal hypersurface

Joël Merker (2009)

Annales de l’institut Fourier

Similarity:

For low order jets, it is known how to construct meromorphic frames on the space of the so-called vertical k -jets J vert k ( 𝒳 ) of the universal hypersurface 𝒳 n + 1 × ( n + 1 + d ) ! ( ( n + 1 ) ! d ! ) - 1 parametrizing all projective hypersurfaces X n + 1 ( ) of degree d . In 2004, for k = n , Siu announced that there exist two constants c n 1 and c n 1 such that the twisted tangent bundle T J vert n ( 𝒳 ) 𝒪 n + 1 ( c n ) 𝒪 ( n + 1 + d ) ! ( ( n + 1 ) ! d ! ) - 1 ( c n ) is generated at every point by its global sections. In...

Notes on prequantization of moduli of G -bundles with connection on Riemann surfaces

Andres Rodriguez (2004)

Annales mathématiques Blaise Pascal

Similarity:

Let 𝒳 S be a smooth proper family of complex curves (i.e. family of Riemann surfaces), and a G -bundle over 𝒳 with connection along the fibres 𝒳 S . We construct a line bundle with connection ( , ) on S (also in cases when the connection on has regular singularities). We discuss the resulting ( , ) mainly in the case G = * . For instance when S is the moduli space of line bundles with connection over a Riemann surface X , 𝒳 = X × S , and is the Poincaré bundle over 𝒳 , we show that ( , ) provides a prequantization...

L 2 extension of adjoint line bundle sections

Dano Kim (2010)

Annales de l’institut Fourier

Similarity:

We prove an extension theorem of Ohsawa-Takegoshi type for line bundle sections on a subvariety of general codimension in a normal projective variety. Our method of proof gives conditions to be satisfied for such extension in a general setting, while such conditions are satisfied when the subvariety is given by an appropriate multiplier ideal sheaf.