Displaying similar documents to “On Asymptotic Minimaxity of Kernel-based Tests”

Fixed-α and fixed-β efficiencies

Christopher S. Withers, Saralees Nadarajah (2013)

ESAIM: Probability and Statistics

Similarity:

Consider testing :  ∈  against :  ∈  for a random sample , ..., from , where and are two disjoint sets of cdfs on ℝ = (−∞, ∞). Two non-local types of efficiencies, referred to as the fixed- and fixed- efficiencies, are introduced for this two-hypothesis testing situation. Theoretical tools are developed to evaluate these efficiencies for some of the most...

Cramér type moderate deviations for Studentized U-statistics

Tze Leng Lai, Qi-Man Shao, Qiying Wang (2011)

ESAIM: Probability and Statistics

Similarity:

Let be a Studentized U-statistic. It is proved that a Cramér type moderate deviation ( ≥ )/(1 − Φ()) → 1 holds uniformly in ∈ [0, ( )) when the kernel satisfies some regular conditions.

Towards a universally consistent estimator of the Minkowski content

Antonio Cuevas, Ricardo Fraiman, László Györfi (2013)

ESAIM: Probability and Statistics

Similarity:

We deal with a subject in the interplay between nonparametric statistics and geometric measure theory. The measure () of the boundary of a set  ⊂ ℝ (with  ≥ 2) can be formally defined, a simple limit, by the so-called Minkowski content. We study the estimation of () from a sample of random points inside and outside . The sample design assumes that, for each sample point, we know (without error) whether or not that point belongs to . Under this design we...

Adaptive non-asymptotic confidence balls in density estimation

Matthieu Lerasle (2012)

ESAIM: Probability and Statistics

Similarity:

We build confidence balls for the common density of a real valued sample . We use resampling methods to estimate the projection of onto finite dimensional linear spaces and a model selection procedure to choose an optimal approximation space. The covering property is ensured for all  ≥ 2 and the balls are adaptive over a collection of linear spaces.

Adaptive non-asymptotic confidence balls in density estimation

Matthieu Lerasle (2012)

ESAIM: Probability and Statistics

Similarity:

We build confidence balls for the common density of a real valued sample . We use resampling methods to estimate the projection of onto finite dimensional linear spaces and a model selection procedure to choose an optimal approximation space. The covering property is ensured for all  ≥ 2 and the balls are adaptive over a collection of linear spaces.

Model selection and estimation of a component in additive regression

Xavier Gendre (2014)

ESAIM: Probability and Statistics

Similarity:

Let  ∈ ℝ be a random vector with mean and covariance matrix where is some known  × -matrix. We construct a statistical procedure to estimate as well as under moment condition on or Gaussian hypothesis. Both cases are developed for known or unknown . Our approach is free from any prior assumption on and is based on non-asymptotic model selection methods....

Penalization versus Goldenshluger − Lepski strategies in warped bases regression

Gaëlle Chagny (2013)

ESAIM: Probability and Statistics

Similarity:

This paper deals with the problem of estimating a regression function , in a random design framework. We build and study two adaptive estimators based on model selection, applied with warped bases. We start with a collection of finite dimensional linear spaces, spanned by orthonormal bases. Instead of expanding directly the target function on these bases, we rather consider the expansion of  =  ∘ , where is the cumulative distribution function of the design, following...

Estimation in autoregressive model with measurement error

Jérôme Dedecker, Adeline Samson, Marie-Luce Taupin (2014)

ESAIM: Probability and Statistics

Similarity:

Consider an autoregressive model with measurement error: we observe = + , where the unobserved is a stationary solution of the autoregressive equation = ( ) + . The regression function is known up to a finite dimensional parameter to be estimated. The distributions of and are unknown and...

Plug-in estimation of level sets in a non-compact setting with applications in multivariate risk theory

Elena Di Bernardino, Thomas Laloë, Véronique Maume-Deschamps, Clémentine Prieur (2013)

ESAIM: Probability and Statistics

Similarity:

This paper deals with the problem of estimating the level sets () =  {() ≥ }, with  ∈ (0,1), of an unknown distribution function on ℝ . A plug-in approach is followed. That is, given a consistent estimator of , we estimate () by () =  { () ≥ }. In our setting, non-compactness property is required for the level sets to estimate. We state consistency results with respect to the Hausdorff distance and the volume of the symmetric...

Local asymptotic normality for normal inverse gaussian Lévy processes with high-frequency sampling

Reiichiro Kawai, Hiroki Masuda (2013)

ESAIM: Probability and Statistics

Similarity:

We prove the local asymptotic normality for the full parameters of the normal inverse Gaussian Lévy process , when we observe high-frequency data , ,, with sampling mesh  → 0 and the terminal sampling time  → ∞. The rate of convergence turns out to be (√, √, √, √) for the dominating parameter (), where stands for the heaviness of the tails, the degree of skewness, the scale, and the location. The essential feature in...

Linear size test sets for certain commutative languages

Štěpán Holub, Juha Kortelainen (2010)

RAIRO - Theoretical Informatics and Applications

Similarity:

We prove that for each positive integer the finite commutative language = ( ...) possesses a test set of size at most Moreover, it is shown that each test set for has at least -1 elements. The result is then generalized to commutative languages containing a word such that (i) alph() = alph}(); and (ii) each symbol ∈ alph}() occurs at least twice in if it occurs at least twice in some word of : each such possesses...

Universality in the bulk of the spectrum for complex sample covariance matrices

Sandrine Péché (2012)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

We consider complex sample covariance matrices = (1/)* where is a × random matrix with i.i.d. entries , 1 ≤ ≤ , 1 ≤ ≤ , with distribution . Under some regularity and decay assumptions on , we prove universality of some local eigenvalue statistics in the bulk of the spectrum in the limit where → ∞ and lim→∞ / = for any real number ∈ (0, ∞).

Survival probabilities of autoregressive processes

Christoph Baumgarten (2014)

ESAIM: Probability and Statistics

Similarity:

Given an autoregressive process of order (  =   + ··· +   +  where the random variables , ,... are i.i.d.), we study the asymptotic behaviour of the probability that the process does not exceed a constant barrier up to time (survival or persistence probability). Depending on the coefficients ,...,...

Spectral analysis in a thin domain with periodically oscillating characteristics

Rita Ferreira, Luísa M. Mascarenhas, Andrey Piatnitski (2012)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

The paper deals with a Dirichlet spectral problem for an elliptic operator with -periodic coefficients in a 3D bounded domain of small thickness . We study the asymptotic behavior of the spectrum as and tend to zero. This asymptotic behavior depends crucially on whether and are of the same order ( ≈ ), or is much less than ( =   < 1), or is much greater than ( =   > 1). We consider all three cases. ...

Spectral analysis in a thin domain with periodically oscillating characteristics

Rita Ferreira, Luísa M. Mascarenhas, Andrey Piatnitski (2012)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

The paper deals with a Dirichlet spectral problem for an elliptic operator with -periodic coefficients in a 3D bounded domain of small thickness . We study the asymptotic behavior of the spectrum as and tend to zero. This asymptotic behavior depends crucially on whether and are of the same order ( ≈ ), or is much less than ( =   < 1), or is much greater than ...