Groups with dense subnormal subgroups
Francesco De Giovanni, Alessio Russo (1999)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
Francesco De Giovanni, Alessio Russo (1999)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
Carlo Casolo (1992)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
Changwen Li, Xuemei Zhang, Xiaolan Yi (2013)
Colloquium Mathematicae
Similarity:
The major aim of the present paper is to strengthen a nice result of Shemetkov and Skiba which gives some conditions under which every non-Frattini G-chief factor of a normal subgroup E of a finite group G is cyclic. As applications, some recent known results are generalized and unified.
Giorgio Busetto, Franco Napolitani (1992)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
Erfanian, Ahmad, Russo, Francesco (2009)
Acta Universitatis Apulensis. Mathematics - Informatics
Similarity:
James Beidleman, Hermann Heineken (2003)
Bollettino dell'Unione Matematica Italiana
Similarity:
We describe the finite groups satisfying one of the following conditions: all maximal subgroups permute with all subnormal subgroups, (2) all maximal subgroups and all Sylow -subgroups for permute with all subnormal subgroups.
Leonid Kurdachenko, Javier Otal, Alessio Russo, Giovanni Vincenzi (2011)
Open Mathematics
Similarity:
This paper studies groups G whose all subgroups are either ascendant or self-normalizing. We characterize the structure of such G in case they are locally finite. If G is a hyperabelian group and has the property, we show that every subgroup of G is in fact ascendant provided G is locally nilpotent or non-periodic. We also restrict our study replacing ascendant subgroups by permutable subgroups, which of course are ascendant [Stonehewer S.E., Permutable subgroups of infinite groups,...
Jiří Parobek (1976)
Časopis pro pěstování matematiky
Similarity: