The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Some notes to the transport equation and to the Green formula”

Solvability of a first order system in three-dimensional non-smooth domains

Michal Křížek, Pekka Neittaanmäki (1985)

Aplikace matematiky

Similarity:

A system of first order partial differential equations is studied which is defined by the divergence and rotation operators in a bounded nonsmooth domain Ω 𝐑 3 . On the boundary δ Ω , the vanishing normal component is prescribed. A variational formulation is given and its solvability is investigated.

On time-harmonic Maxwell equations with nonhomogeneous conductivities: Solvability and FE-approximation

Michal Křížek, Pekka Neittaanmäki (1989)

Aplikace matematiky

Similarity:

The solvability of time-harmonic Maxwell equations in the 3D-case with nonhomogeneous conductivities is considered by adapting Sobolev space technique and variational formulation of the problem in question. Moreover, a finite element approximation is presented in the 3D-case together with an error estimate in the energy norm. Some remarks are given to the 2D-problem arising from geophysics.

On local existence of solutions of the free boundary problem for an incompressible viscous self-gravitating fluid motion

Piotr Mucha, Wojciech Zajączkowski (2000)

Applicationes Mathematicae

Similarity:

The local-in-time existence of solutions of the free boundary problem for an incompressible viscous self-gravitating fluid motion is proved. We show the existence of solutions with lowest possible regularity for this problem such that u W r 2 , 1 ( Ω ˜ T ) with r>3. The existence is proved by the method of successive approximations where the solvability of the Cauchy-Neumann problem for the Stokes system is applied. We have to underline that in the L p -approach the Lagrangian coordinates must be used....