Displaying similar documents to “On locally graded non-periodic barely transitive groups”

On locally graded barely transitive groups

Cansu Betin, Mahmut Kuzucuoğlu (2013)

Open Mathematics

Similarity:

We show that a barely transitive group is totally imprimitive if and only if it is locally graded. Moreover, we obtain the description of a barely transitive group G for the case G has a cyclic subgroup 〈x〉 which intersects non-trivially with all subgroups and for the case a point stabilizer H of G has a subgroup H 1 of finite index in H satisfying the identity χ(H 1) = 1, where χ is a multi-linear commutator of weight w.

Locally graded groups with certain minimal conditions for subgroups (II).

Javier Otal, Juan Manuel Peña (1988)

Publicacions Matemàtiques

Similarity:

This paper deals with one of the ways of studying infinite groups many of whose subgroups have a prescribed property, namely the consideration of minimal conditions. If P is a theoretical property of groups and subgroups, we show that a locally graded group P satisfies the minimal conditions for subgroups not having P if and only if either G is a Cernikov group or every subgroup of G satisfies P, for certain values of P concerning normality, nilpotency and related ideas.

A note on locally graded groups

Patrizia Longobardi, Mercede Maj, Howard Smith (1995)

Rendiconti del Seminario Matematico della Università di Padova

Similarity:

On totally inert simple groups

Martyn Dixon, Martin Evans, Antonio Tortora (2010)

Open Mathematics

Similarity:

A subgroup H of a group G is inert if |H: H ∩ H g| is finite for all g ∈ G and a group G is totally inert if every subgroup H of G is inert. We investigate the structure of minimal normal subgroups of totally inert groups and show that infinite locally graded simple groups cannot be totally inert.

On non-periodic groups whose finitely generated subgroups are either permutable or pronormal

L. A. Kurdachenko, I. Ya. Subbotin, T. I. Ermolkevich (2013)

Mathematica Bohemica

Similarity:

The current article considers some infinite groups whose finitely generated subgroups are either permutable or pronormal. A group G is called a generalized radical, if G has an ascending series whose factors are locally nilpotent or locally finite. The class of locally generalized radical groups is quite wide. For instance, it includes all locally finite, locally soluble, and almost locally soluble groups. The main result of this paper is the followingTheorem. Let G be a locally generalized...