From astrology to topology via Feynman diagrams and Lie algebras
Bar-Natan, Dror
Similarity:
Summary of the three lectures. These notes are available electronically at http://www.ma.huji.ac.il/~drorbn/Talks/Srni-9901/notes.html.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Bar-Natan, Dror
Similarity:
Summary of the three lectures. These notes are available electronically at http://www.ma.huji.ac.il/~drorbn/Talks/Srni-9901/notes.html.
Xiao-Song Lin (1998)
Banach Center Publications
Similarity:
Simon Willerton (1998)
Banach Center Publications
Similarity:
Three results are shown which demonstrate how Vassiliev invariants behave like polynomials.
Józef Przytycki (1995)
Banach Center Publications
Similarity:
We describe in this talk three methods of constructing different links with the same Jones type invariant. All three can be thought as generalizations of mutation. The first combines the satellite construction with mutation. The second uses the notion of rotant, taken from the graph theory, the third, invented by Jones, transplants into knot theory the idea of the Yang-Baxter equation with the spectral parameter (idea employed by Baxter in the theory of solvable models in statistical...
Bogusław Broda (1997)
Banach Center Publications
Similarity:
An approach to construction of topological invariants of the Reshetikhin-Turaev-Witten type of 3- and 4-dimensional manifolds in the framework of SU(2) Chern-Simons gauge theory and its hidden (quantum) gauge symmetry is presented.
Stavros Garoufalidis (2004)
Fundamenta Mathematicae
Similarity:
We formulate a conjectural formula for Khovanov's invariants of alternating knots in terms of the Jones polynomial and the signature of the knot.
Lee Rudolph (1989)
Revista Matemática de la Universidad Complutense de Madrid
Similarity:
This is a survey (including new results) of relations ?some emergent, others established? among three notions which the 1980s saw introduced into knot theory: quasipositivity of a link, the enhanced Milnor number of a fibered link, and the new link polynomials. The Seifert form fails to determine these invariants; perhaps there exists an ?enhanced Seifert form? which does.
Taizo Kanenobu, Yasuyuki Miyazawa (1998)
Banach Center Publications
Similarity:
We prove that the number of linearly independent Vassiliev invariants for an r-component link of order n, which derived from the HOMFLY polynomial, is greater than or equal to min{n,[(n+r-1)/2]}.