The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Deformation quantization”

Classifications of star products and deformations of Poisson brackets

Philippe Bonneau (2000)

Banach Center Publications

Similarity:

On the algebra of functions on a symplectic manifold we consider the pointwise product and the Poisson bracket; after a brief review of the classifications of the deformations of these structures, we give explicit formulas relating a star product to its classifying formal Poisson bivector.

Covariant star-products

Mohsen Masmoudi (1995)

Annales de la Faculté des sciences de Toulouse : Mathématiques

Similarity:

Aspects of Geometric Quantization Theory in Poisson Geometry

Izu Vaisman (2000)

Banach Center Publications

Similarity:

This is a survey exposition of the results of [14] on the relationship between the geometric quantization of a Poisson manifold, of its symplectic leaves and its symplectic realizations, and of the results of [13] on a certain kind of super-geometric quantization. A general formulation of the geometric quantization problem is given at the beginning.

Geometric quantization and no-go theorems

Viktor Ginzburg, Richard Montgomery (2000)

Banach Center Publications

Similarity:

A geometric quantization of a Kähler manifold, viewed as a symplectic manifold, depends on the complex structure compatible with the symplectic form. The quantizations form a vector bundle over the space of such complex structures. Having a canonical quantization would amount to finding a natural (projectively) flat connection on this vector bundle. We prove that for a broad class of manifolds, including symplectic homogeneous spaces (e.g., the sphere), such connection does not exist....