The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On transnormal horizons of convex hypersurfaces”

Parallel hypersurfaces

Barbara Opozda, Udo Simon (2014)

Annales Polonici Mathematici

Similarity:

We investigate parallel hypersurfaces in the context of relative hypersurface geometry, in particular including the cases of Euclidean and Blaschke hypersurfaces. We describe the geometric relations between parallel hypersurfaces in terms of deformation operators, and we apply the results to the parallel deformation of special classes of hypersurfaces, e.g. quadrics and Weingarten hypersurfaces.

Characterization of totally umbilic hypersurfaces in a space form by circles

Toshiaki Adachi, Sadahiro Maeda (2005)

Czechoslovak Mathematical Journal

Similarity:

In this paper we characterize totally umbilic hypersurfaces in a space form by a property of the extrinsic shape of circles on hypersurfaces. This characterization corresponds to characterizations of isoparametric hypersurfaces in a space form by properties of the extrinsic shape of geodesics due to Kimura-Maeda.

A Useful Characterization of Some Real Hypersurfaces in a Nonflat Complex Space Form

Takehiro Itoh, Sadahiro Maeda (2006)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

We characterize totally η-umbilic real hypersurfaces in a nonflat complex space form M̃ₙ(c) (= ℂPⁿ(c) or ℂHⁿ(c)) and a real hypersurface of type (A₂) of radius π/(2√c) in ℂPⁿ(c) by observing the shape of some geodesics on those real hypersurfaces as curves in the ambient manifolds (Theorems 1 and 2).

Compact hypersurfaces with constant higher order mean curvatures.

Antonio Ros Mulero (1987)

Revista Matemática Iberoamericana

Similarity:

A fundamental question about hypersurfaces in the Euclidean space is to decide if the sphere is the only compact hypersurface (embedded or immersed) with constant higher order mean curvature H, for some r = 1, ..., n.