The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Confining quantum particles with a purely magnetic field”

Accurate eigenvalue asymptotics for the magnetic Neumann Laplacian

Soeren Fournais, Bernard Helffer (2006)

Annales de l’institut Fourier

Similarity:

Motivated by the theory of superconductivity and more precisely by the problem of the onset of superconductivity in dimension two, many papers devoted to the analysis in a semi-classical regime of the lowest eigenvalue of the Schrödinger operator with magnetic field have appeared recently. Here we would like to mention the works by Bernoff-Sternberg, Lu-Pan, Del Pino-Felmer-Sternberg and Helffer-Morame and also Bauman-Phillips-Tang for the case of a disc. In the present paper we settle...

Strong diamagnetism for general domains and application

Soeren Fournais, Bernard Helffer (2007)

Annales de l’institut Fourier

Similarity:

We consider the Neumann Laplacian with constant magnetic field on a regular domain in 2 . Let B be the strength of the magnetic field and let λ 1 ( B ) be the first eigenvalue of this Laplacian. It is proved that B λ 1 ( B ) is monotone increasing for large B . Together with previous results of the authors, this implies the coincidence of all the “third” critical fields for strongly type 2 superconductors.

Maximal inequalities and Riesz transform estimates on L p spaces for Schrödinger operators with nonnegative potentials

Pascal Auscher, Besma Ben Ali (2007)

Annales de l’institut Fourier

Similarity:

We show various L p estimates for Schrödinger operators - Δ + V on n and their square roots. We assume reverse Hölder estimates on the potential, and improve some results of Shen. Our main tools are improved Fefferman-Phong inequalities and reverse Hölder estimates for weak solutions of - Δ + V and their gradients.

The spectrum of Schrödinger operators with random δ magnetic fields

Takuya Mine, Yuji Nomura (2009)

Annales de l’institut Fourier

Similarity:

We shall consider the Schrödinger operators on 2 with the magnetic field given by a nonnegative constant field plus random δ magnetic fields of the Anderson type or of the Poisson-Anderson type. We shall investigate the spectrum of these operators by the method of the admissible potentials by Kirsch-Martinelli. Moreover, we shall prove the lower Landau levels are infinitely degenerated eigenvalues when the constant field is sufficiently large, by estimating the growth order of the eigenfunctions...