Displaying similar documents to “Stochastic homogenization of a class of monotone eigenvalue problems”

Multiscale stochastic homogenization of convection-diffusion equations

Nils Svanstedt (2008)

Applications of Mathematics

Similarity:

Multiscale stochastic homogenization is studied for convection-diffusion problems. More specifically, we consider the asymptotic behaviour of a sequence of realizations of the form u ε ω / t + 1 / ϵ 3 𝒞 T 3 ( x / ε 3 ) ω 3 · u ε ω - div α T 1 ( x / ε 1 ) ω 1 , T 2 ( x / ε 2 ) ω 2 , t u ε ω = f . It is shown, under certain structure assumptions on the random vector field 𝒞 ( ω 3 ) and the random map α ( ω 1 , ω 2 , t ) , that the sequence { u ϵ ω } of solutions converges in the sense of G-convergence of parabolic operators to the solution u of the homogenized problem u / t - div ( ( t ) u ) = f .

On the uniqueness and simplicity of the principal eigenvalue

Marcello Lucia (2005)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Similarity:

Given an open set Ω of R N N > 2 , bounded or unbounded, and a function w L N 2 Ω with w + 0 but allowed to change sign, we give a short proof that the positive principal eigenvalue of the problem - u = λ w x u , u D 0 1 , 2 Ω is unique and simple. We apply this result to study unbounded Palais-Smale sequences as well as to give a priori estimates on the set of critical points of functionals of the type I u = 1 2 Ω u 2 d x - Ω G x , u d x , u D 0 1 , 2 Ω , when G has a subquadratic growth at infinity.

Symmetrization of functions and principal eigenvalues of elliptic operators

François Hamel, Nikolai Nadirashvili, Emmanuel Russ (2011-2012)

Séminaire Laurent Schwartz — EDP et applications

Similarity:

In this paper, we consider shape optimization problems for the principal eigenvalues of second order uniformly elliptic operators in bounded domains of n . We first recall the classical Rayleigh-Faber-Krahn problem, that is the minimization of the principal eigenvalue of the Dirichlet Laplacian in a domain with fixed Lebesgue measure. We then consider the case of the Laplacian with a bounded drift, that is the operator - Δ + v · , for which the minimization problem is still well posed. Next, we...