Displaying similar documents to “On the Geometry of Goursat Structures”

Pointwise constrained radially increasing minimizers in the quasi-scalar calculus of variations

Luís Balsa Bicho, António Ornelas (2014)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

We prove of vector minimizers () =  (||) to multiple integrals ∫ ((), |()|)  on a  ⊂ ℝ, among the Sobolev functions (·) in + (, ℝ), using a  : ℝ×ℝ → [0,∞] with (·) and . Besides such basic hypotheses, (·,·) is assumed to satisfy also...

Constraints on distributions imposed by properties of linear forms

Denis Belomestny (2010)

ESAIM: Probability and Statistics

Similarity:

Let () be independent identically distributed bivariate vectors and , are two linear forms with positive coefficients. We study two problems: under what conditions does the equidistribution of and imply the same property for and , and under what conditions does the independence of and entail independence of and ? Some analytical sufficient conditions...

Hydrodynamic limit of a d-dimensional exclusion process with conductances

Fábio Júlio Valentim (2012)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

Fix a polynomial of the form () = + ∑2≤≤    =1 with (1) gt; 0. We prove that the evolution, on the diffusive scale, of the empirical density of exclusion processes on 𝕋 d , with conductances given by special class of functions, is described by the unique weak solution of the non-linear parabolic partial differential equation = ∑    ...

Hereditary properties of words

József Balogh, Béla Bollobás (2010)

RAIRO - Theoretical Informatics and Applications

Similarity:

Let be a hereditary property of words, , an infinite class of finite words such that every subword (block) of a word belonging to is also in . Extending the classical Morse-Hedlund theorem, we show that either contains at least words of length for every  or, for some , it contains at most words of length for every . More importantly, we prove the following quantitative extension of this result: if has words of length then, for every , it contains at most ⌈( + 1)/2⌉⌈( + 1)/2⌈...

Means in complete manifolds: uniqueness and approximation

Marc Arnaudon, Laurent Miclo (2014)

ESAIM: Probability and Statistics

Similarity:

Let be a complete Riemannian manifold,  ∈ ℕ and  ≥ 1. We prove that almost everywhere on  = ( ,, ) ∈  for Lebesgue measure in , the measure μ ( x ) = N k = 1 N x k μ ( x ) = 1 N ∑ k = 1 N δ x k has a unique–mean (). As a consequence, if  = ( ,, ) is a -valued random variable with absolutely continuous law, then almost surely (()) has a unique –mean. In particular if ( ...

Plug-in estimation of level sets in a non-compact setting with applications in multivariate risk theory

Elena Di Bernardino, Thomas Laloë, Véronique Maume-Deschamps, Clémentine Prieur (2013)

ESAIM: Probability and Statistics

Similarity:

This paper deals with the problem of estimating the level sets () =  {() ≥ }, with  ∈ (0,1), of an unknown distribution function on ℝ . A plug-in approach is followed. That is, given a consistent estimator of , we estimate () by () =  { () ≥ }. In our setting, non-compactness property is required for the level sets to estimate. We state consistency results with respect to the Hausdorff distance and the volume of the symmetric...

On the distribution of characteristic parameters of words

Arturo Carpi, Aldo de Luca (2010)

RAIRO - Theoretical Informatics and Applications

Similarity:

For any finite word on a finite alphabet, we consider the basic parameters and of defined as follows: is the minimal natural number for which has no right special factor of length and is the minimal natural number for which has no repeated suffix of length . In this paper we study the distributions of these parameters, here called characteristic parameters, among the words ...

Universality in the bulk of the spectrum for complex sample covariance matrices

Sandrine Péché (2012)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

We consider complex sample covariance matrices = (1/)* where is a × random matrix with i.i.d. entries , 1 ≤ ≤ , 1 ≤ ≤ , with distribution . Under some regularity and decay assumptions on , we prove universality of some local eigenvalue statistics in the bulk of the spectrum in the limit where → ∞ and lim→∞ / = for any real number ∈ (0, ∞).