Displaying similar documents to “Structured matrix numerical solution of the nonlinear Schrödinger equation by the inverse scattering transform.”

Scattering amplitude for the Schrödinger equation with strong magnetic field

Laurent Michel (2005)

Journées Équations aux dérivées partielles


In this note, we study the scattering amplitude for the Schrödinger equation with constant magnetic field. We consider the case where the strengh of the magnetic field goes to infinity and we discuss the competition between the magnetic and the electrostatic effects.

Microlocalization of resonant states and estimates of the residue of the scattering amplitude

Jean-François Bony, Laurent Michel (2003)

Journées équations aux dérivées partielles


We obtain some microlocal estimates of the resonant states associated to a resonance z 0 of an h -differential operator. More precisely, we show that the normalized resonant states are 𝒪 ( | Im z 0 | / h + h ) outside the set of trapped trajectories and are 𝒪 ( h ) in the incoming area of the phase space. As an application, we show that the residue of the scattering amplitude of a Schrödinger operator is small in some directions under an estimate of the norm of the spectral projector. Finally we prove...

Spectral projection, residue of the scattering amplitude and Schrödinger group expansion for barrier-top resonances

Jean-François Bony, Setsuro Fujiié, Thierry Ramond, Maher Zerzeri (2011)

Annales de l’institut Fourier


We study the spectral projection associated to a barrier-top resonance for the semiclassical Schrödinger operator. First, we prove a resolvent estimate for complex energies close to such a resonance. Using that estimate and an explicit representation of the resonant states, we show that the spectral projection has a semiclassical expansion in integer powers of h , and compute its leading term. We use this result to compute the residue of the scattering amplitude at such a resonance. Eventually,...