Microlocalization of resonant states and estimates of the residue of the scattering amplitude
Jean-François Bony; Laurent Michel
Journées équations aux dérivées partielles (2003)
- page 1-12
- ISSN: 0752-0360
Access Full Article
topAbstract
topHow to cite
topBony, Jean-François, and Michel, Laurent. "Microlocalization of resonant states and estimates of the residue of the scattering amplitude." Journées équations aux dérivées partielles (2003): 1-12. <http://eudml.org/doc/93444>.
@article{Bony2003,
abstract = {We obtain some microlocal estimates of the resonant states associated to a resonance $z_\{0\}$ of an $h$-differential operator. More precisely, we show that the normalized resonant states are $\{\mathcal \{O\}\} (\sqrt\{ |\mathrm \{Im\} \, z_\{0\}| /h\}$$+ h^\{\infty \})$ outside the set of trapped trajectories and are $\{\mathcal \{O\}\} (h^\{\infty \})$ in the incoming area of the phase space. As an application, we show that the residue of the scattering amplitude of a Schrödinger operator is small in some directions under an estimate of the norm of the spectral projector. Finally we prove such bound in some examples.},
author = {Bony, Jean-François, Michel, Laurent},
journal = {Journées équations aux dérivées partielles},
keywords = {Schrödinger operator; spectral projector; -differential operator},
language = {eng},
pages = {1-12},
publisher = {Université de Nantes},
title = {Microlocalization of resonant states and estimates of the residue of the scattering amplitude},
url = {http://eudml.org/doc/93444},
year = {2003},
}
TY - JOUR
AU - Bony, Jean-François
AU - Michel, Laurent
TI - Microlocalization of resonant states and estimates of the residue of the scattering amplitude
JO - Journées équations aux dérivées partielles
PY - 2003
PB - Université de Nantes
SP - 1
EP - 12
AB - We obtain some microlocal estimates of the resonant states associated to a resonance $z_{0}$ of an $h$-differential operator. More precisely, we show that the normalized resonant states are ${\mathcal {O}} (\sqrt{ |\mathrm {Im} \, z_{0}| /h}$$+ h^{\infty })$ outside the set of trapped trajectories and are ${\mathcal {O}} (h^{\infty })$ in the incoming area of the phase space. As an application, we show that the residue of the scattering amplitude of a Schrödinger operator is small in some directions under an estimate of the norm of the spectral projector. Finally we prove such bound in some examples.
LA - eng
KW - Schrödinger operator; spectral projector; -differential operator
UR - http://eudml.org/doc/93444
ER -
References
top- [20] R. Abraham and J. E. Marsden, Foundations of mechanics, Second edition, Advanced Book Program, Benjamin/Cummings Publishing, 1978. Zbl0393.70001MR515141
- [21] N. Burq, Lower bounds for shape resonances widths of long range Schrödinger operators, Amer. J. Math. 124 (2002), no. 4, 677-735. Zbl1013.35019MR1914456
- [22] M. Dimassi and J. Sjöstrand, Spectral asymptotics in the semi-classical limit, Cambridge University Press, Cambridge, 1999. Zbl0926.35002MR1735654
- [23] S. Fujiié and T. Ramond, Matrice de scattering et résonances associées à une orbite hétérocline, Ann. Inst. H. Poincaré Phys. Théor. 69 (1998), no. 1, 31-82. Zbl0916.34071MR1635811
- [24] S. Fujiié and T. Ramond, Breit-Wigner formula at barrier tops, preprint (2002). Zbl1062.81057MR1972758
- [25] C. Gérard and A. Martinez, Prolongement méromorphe de la matrice de scattering pour des problèmes à deux corps à longue portée, Ann. Inst. H. Poincaré Phys. Théor. 51 (1989), no. 1, 81-110. Zbl0711.35097MR1029851
- [26] C. Gérard and J. Sjöstrand, Semiclassical resonances generated by a closed trajectory of hyperbolic type, Comm. Math. Phys. 108 (1987), no. 3, 391-421. Zbl0637.35027MR874901
- [27] B. Helffer and J. Sjöstrand, Résonances en limite semi-classique, Mém. Soc. Math. France (N.S.) (1986), no. 24-25. Zbl0631.35075MR871788
- [28] H. Isozaki and H. Kitada, Scattering matrices for two-body Schrödinger operators, Sci. Papers College Arts Sci. Univ Tokyo 35 (1985), no. 1, 81-107. Zbl0615.35065MR847881
- [29] N. Kaidi and P. Kerdelhué, Forme normale de Birkhoff et résonances, Asymptot. Anal. 23 (2000), no. 1, 1-21. Zbl0955.35009MR1764337
- [30] A. Lahmar-Benbernou, Estimation des résidus de la matrice de diffusion associés à des résonances de forme. I, Ann. Inst. H. Poincaré Phys. Théor. 71 (1999), no. 3, 303-338. Zbl0944.35060MR1714347
- [31] A. Lahmar-Benbernou and A. Martinez, Semiclassical asymptotics of the residues of the scattering matrix for shape resonances, Asymptot. Anal. 20 (1999), no. 1, 13-38. Zbl0931.35119MR1697827
- [32] A. Martinez, An introduction to semiclassical and microlocal analysis, Springer-Verlag, New York, 2002. Zbl0994.35003MR1872698
- [33] L. Michel, Semi-classical behavior of the scattering amplitude for trapping perturbations at fixed energy, Can. J. Math., to appear. Zbl1084.35067MR2074047
- [34] L. Michel, Semi-classical estimate of the residue of the scattering amplitude for long-range potentials, J. Phys. A 36 (2003), 4375-4393. Zbl1113.81119MR1984509
- [35] V. Petkov and M. Zworski, Semi-classical estimates on the scattering determinant, Ann. Henri Poincaré 2 (2001), no. 4, 675-711. Zbl1041.81041MR1852923
- [36] J. Sjöstrand, Singularités analytiques microlocales, Astérisque, 95, Astérisque, vol. 95, Soc. Math. France, Paris, 1982, pp. 1-166. Zbl0524.35007MR699623
- [37] J. Sjöstrand, Semiclassical resonances generated by nondegenerate critical points, Pseudodifferential operators (Oberwolfach, 1986), Springer, Berlin, 1987, pp. 402-429. Zbl0627.35074MR897789
- [38] J. Sjöstrand and M. Zworski, Complex scaling and the distribution of scattering poles, J. Amer. Math. Soc. 4 (1991), no. 4, 729-769. Zbl0752.35046MR1115789
- [39] P. Stefanov, Estimates on the residue of the scattering amplitude, Asympt. Anal. 32 (2002), no. 3,4, 317-333. Zbl1060.35097MR1993653
- [40] P. Stefanov, Sharp upper bounds on the number of resonances near the real axis for trapped systems, Amer. J. Math., 125 (2003), no. 1, 183-224. Zbl1040.35055MR1953522
- [41] S-H. Tang and M. Zworski, From quasimodes to resonances, Math. Res. Lett. 5 (1998), no. 3, 261-272. Zbl0913.35101MR1637824
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.