Microlocalization of resonant states and estimates of the residue of the scattering amplitude

Jean-François Bony; Laurent Michel

Journées équations aux dérivées partielles (2003)

  • page 1-12
  • ISSN: 0752-0360

Abstract

top
We obtain some microlocal estimates of the resonant states associated to a resonance z 0 of an h -differential operator. More precisely, we show that the normalized resonant states are 𝒪 ( | Im z 0 | / h + h ) outside the set of trapped trajectories and are 𝒪 ( h ) in the incoming area of the phase space. As an application, we show that the residue of the scattering amplitude of a Schrödinger operator is small in some directions under an estimate of the norm of the spectral projector. Finally we prove such bound in some examples.

How to cite

top

Bony, Jean-François, and Michel, Laurent. "Microlocalization of resonant states and estimates of the residue of the scattering amplitude." Journées équations aux dérivées partielles (2003): 1-12. <http://eudml.org/doc/93444>.

@article{Bony2003,
abstract = {We obtain some microlocal estimates of the resonant states associated to a resonance $z_\{0\}$ of an $h$-differential operator. More precisely, we show that the normalized resonant states are $\{\mathcal \{O\}\} (\sqrt\{ |\mathrm \{Im\} \, z_\{0\}| /h\}$$+ h^\{\infty \})$ outside the set of trapped trajectories and are $\{\mathcal \{O\}\} (h^\{\infty \})$ in the incoming area of the phase space. As an application, we show that the residue of the scattering amplitude of a Schrödinger operator is small in some directions under an estimate of the norm of the spectral projector. Finally we prove such bound in some examples.},
author = {Bony, Jean-François, Michel, Laurent},
journal = {Journées équations aux dérivées partielles},
keywords = {Schrödinger operator; spectral projector; -differential operator},
language = {eng},
pages = {1-12},
publisher = {Université de Nantes},
title = {Microlocalization of resonant states and estimates of the residue of the scattering amplitude},
url = {http://eudml.org/doc/93444},
year = {2003},
}

TY - JOUR
AU - Bony, Jean-François
AU - Michel, Laurent
TI - Microlocalization of resonant states and estimates of the residue of the scattering amplitude
JO - Journées équations aux dérivées partielles
PY - 2003
PB - Université de Nantes
SP - 1
EP - 12
AB - We obtain some microlocal estimates of the resonant states associated to a resonance $z_{0}$ of an $h$-differential operator. More precisely, we show that the normalized resonant states are ${\mathcal {O}} (\sqrt{ |\mathrm {Im} \, z_{0}| /h}$$+ h^{\infty })$ outside the set of trapped trajectories and are ${\mathcal {O}} (h^{\infty })$ in the incoming area of the phase space. As an application, we show that the residue of the scattering amplitude of a Schrödinger operator is small in some directions under an estimate of the norm of the spectral projector. Finally we prove such bound in some examples.
LA - eng
KW - Schrödinger operator; spectral projector; -differential operator
UR - http://eudml.org/doc/93444
ER -

References

top
  1. [20] R. Abraham and J. E. Marsden, Foundations of mechanics, Second edition, Advanced Book Program, Benjamin/Cummings Publishing, 1978. Zbl0393.70001MR515141
  2. [21] N. Burq, Lower bounds for shape resonances widths of long range Schrödinger operators, Amer. J. Math. 124 (2002), no. 4, 677-735. Zbl1013.35019MR1914456
  3. [22] M. Dimassi and J. Sjöstrand, Spectral asymptotics in the semi-classical limit, Cambridge University Press, Cambridge, 1999. Zbl0926.35002MR1735654
  4. [23] S. Fujiié and T. Ramond, Matrice de scattering et résonances associées à une orbite hétérocline, Ann. Inst. H. Poincaré Phys. Théor. 69 (1998), no. 1, 31-82. Zbl0916.34071MR1635811
  5. [24] S. Fujiié and T. Ramond, Breit-Wigner formula at barrier tops, preprint (2002). Zbl1062.81057MR1972758
  6. [25] C. Gérard and A. Martinez, Prolongement méromorphe de la matrice de scattering pour des problèmes à deux corps à longue portée, Ann. Inst. H. Poincaré Phys. Théor. 51 (1989), no. 1, 81-110. Zbl0711.35097MR1029851
  7. [26] C. Gérard and J. Sjöstrand, Semiclassical resonances generated by a closed trajectory of hyperbolic type, Comm. Math. Phys. 108 (1987), no. 3, 391-421. Zbl0637.35027MR874901
  8. [27] B. Helffer and J. Sjöstrand, Résonances en limite semi-classique, Mém. Soc. Math. France (N.S.) (1986), no. 24-25. Zbl0631.35075MR871788
  9. [28] H. Isozaki and H. Kitada, Scattering matrices for two-body Schrödinger operators, Sci. Papers College Arts Sci. Univ Tokyo 35 (1985), no. 1, 81-107. Zbl0615.35065MR847881
  10. [29] N. Kaidi and P. Kerdelhué, Forme normale de Birkhoff et résonances, Asymptot. Anal. 23 (2000), no. 1, 1-21. Zbl0955.35009MR1764337
  11. [30] A. Lahmar-Benbernou, Estimation des résidus de la matrice de diffusion associés à des résonances de forme. I, Ann. Inst. H. Poincaré Phys. Théor. 71 (1999), no. 3, 303-338. Zbl0944.35060MR1714347
  12. [31] A. Lahmar-Benbernou and A. Martinez, Semiclassical asymptotics of the residues of the scattering matrix for shape resonances, Asymptot. Anal. 20 (1999), no. 1, 13-38. Zbl0931.35119MR1697827
  13. [32] A. Martinez, An introduction to semiclassical and microlocal analysis, Springer-Verlag, New York, 2002. Zbl0994.35003MR1872698
  14. [33] L. Michel, Semi-classical behavior of the scattering amplitude for trapping perturbations at fixed energy, Can. J. Math., to appear. Zbl1084.35067MR2074047
  15. [34] L. Michel, Semi-classical estimate of the residue of the scattering amplitude for long-range potentials, J. Phys. A 36 (2003), 4375-4393. Zbl1113.81119MR1984509
  16. [35] V. Petkov and M. Zworski, Semi-classical estimates on the scattering determinant, Ann. Henri Poincaré 2 (2001), no. 4, 675-711. Zbl1041.81041MR1852923
  17. [36] J. Sjöstrand, Singularités analytiques microlocales, Astérisque, 95, Astérisque, vol. 95, Soc. Math. France, Paris, 1982, pp. 1-166. Zbl0524.35007MR699623
  18. [37] J. Sjöstrand, Semiclassical resonances generated by nondegenerate critical points, Pseudodifferential operators (Oberwolfach, 1986), Springer, Berlin, 1987, pp. 402-429. Zbl0627.35074MR897789
  19. [38] J. Sjöstrand and M. Zworski, Complex scaling and the distribution of scattering poles, J. Amer. Math. Soc. 4 (1991), no. 4, 729-769. Zbl0752.35046MR1115789
  20. [39] P. Stefanov, Estimates on the residue of the scattering amplitude, Asympt. Anal. 32 (2002), no. 3,4, 317-333. Zbl1060.35097MR1993653
  21. [40] P. Stefanov, Sharp upper bounds on the number of resonances near the real axis for trapped systems, Amer. J. Math., 125 (2003), no. 1, 183-224. Zbl1040.35055MR1953522
  22. [41] S-H. Tang and M. Zworski, From quasimodes to resonances, Math. Res. Lett. 5 (1998), no. 3, 261-272. Zbl0913.35101MR1637824

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.