Displaying similar documents to “Arc-transitive non-Cayley graphs from regular maps.”

Tetravalent Arc-Transitive Graphs of Order 3p 2

Mohsen Ghasemi (2014)

Discussiones Mathematicae Graph Theory

Similarity:

Let s be a positive integer. A graph is s-transitive if its automorphism group is transitive on s-arcs but not on (s + 1)-arcs. Let p be a prime. In this article a complete classification of tetravalent s-transitive graphs of order 3p2 is given

Dynamic cage survey.

Exoo, Geoffrey, Jajcay, Robert (2008)

The Electronic Journal of Combinatorics [electronic only]

Similarity:

Transitive closure and transitive reduction in bidirected graphs

Ouahiba Bessouf, Abdelkader Khelladi, Thomas Zaslavsky (2019)

Czechoslovak Mathematical Journal

Similarity:

In a bidirected graph, an edge has a direction at each end, so bidirected graphs generalize directed graphs. We generalize the definitions of transitive closure and transitive reduction from directed graphs to bidirected graphs by introducing new notions of bipath and bicircuit that generalize directed paths and cycles. We show how transitive reduction is related to transitive closure and to the matroids of the signed graph corresponding to the bidirected graph.

On the domination number of prisms of graphs

Alewyn P. Burger, Christina M. Mynhardt, William D. Weakley (2004)

Discussiones Mathematicae Graph Theory

Similarity:

For a permutation π of the vertex set of a graph G, the graph π G is obtained from two disjoint copies G₁ and G₂ of G by joining each v in G₁ to π(v) in G₂. Hence if π = 1, then πG = K₂×G, the prism of G. Clearly, γ(G) ≤ γ(πG) ≤ 2 γ(G). We study graphs for which γ(K₂×G) = 2γ(G), those for which γ(πG) = 2γ(G) for at least one permutation π of V(G) and those for which γ(πG) = 2γ(G) for each permutation π of V(G).