The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Torsion free exterior powers of a module and their resolutions.”

Torsion Part of ℤ-module

Yuichi Futa, Hiroyuki Okazaki, Yasunari Shidama (2015)

Formalized Mathematics

Similarity:

In this article, we formalize in Mizar [7] the definition of “torsion part” of ℤ-module and its properties. We show ℤ-module generated by the field of rational numbers as an example of torsion-free non free ℤ-modules. We also formalize the rank-nullity theorem over finite-rank free ℤ-modules (previously formalized in [1]). ℤ-module is necessary for lattice problems, LLL (Lenstra, Lenstra and Lovász) base reduction algorithm [23] and cryptographic systems with lattices [24].

Submodule of free Z-module

Yuichi Futa, Hiroyuki Okazaki, Yasunari Shidama (2013)

Formalized Mathematics

Similarity:

In this article, we formalize a free Z-module and its property. In particular, we formalize the vector space of rational field corresponding to a free Z-module and prove formally that submodules of a free Z-module are free. Z-module is necassary for lattice problems - LLL (Lenstra, Lenstra and Lov´asz) base reduction algorithm and cryptographic systems with lattice [20]. Some theorems in this article are described by translating theorems in [11] into theorems of Z-module, however their...

Torsion Z-module and Torsion-free Z-module

Yuichi Futa, Hiroyuki Okazaki, Kazuhisa Nakasho, Yasunari Shidama (2014)

Formalized Mathematics

Similarity:

In this article, we formalize a torsion Z-module and a torsionfree Z-module. Especially, we prove formally that finitely generated torsion-free Z-modules are finite rank free. We also formalize properties related to rank of finite rank free Z-modules. The notion of Z-module is necessary for solving lattice problems, LLL (Lenstra, Lenstra, and Lov´asz) base reduction algorithm [20], cryptographic systems with lattice [21], and coding theory [11].