Submodule of free Z-module
Yuichi Futa; Hiroyuki Okazaki; Yasunari Shidama
Formalized Mathematics (2013)
- Volume: 21, Issue: 4, page 273-282
- ISSN: 1426-2630
Access Full Article
topAbstract
topHow to cite
topYuichi Futa, Hiroyuki Okazaki, and Yasunari Shidama. "Submodule of free Z-module." Formalized Mathematics 21.4 (2013): 273-282. <http://eudml.org/doc/267363>.
@article{YuichiFuta2013,
abstract = {In this article, we formalize a free Z-module and its property. In particular, we formalize the vector space of rational field corresponding to a free Z-module and prove formally that submodules of a free Z-module are free. Z-module is necassary for lattice problems - LLL (Lenstra, Lenstra and Lov´asz) base reduction algorithm and cryptographic systems with lattice [20]. Some theorems in this article are described by translating theorems in [11] into theorems of Z-module, however their proofs are different.},
author = {Yuichi Futa, Hiroyuki Okazaki, Yasunari Shidama},
journal = {Formalized Mathematics},
keywords = {free Z-module; submodule of free Z-module; free -module; submodule of free -module},
language = {eng},
number = {4},
pages = {273-282},
title = {Submodule of free Z-module},
url = {http://eudml.org/doc/267363},
volume = {21},
year = {2013},
}
TY - JOUR
AU - Yuichi Futa
AU - Hiroyuki Okazaki
AU - Yasunari Shidama
TI - Submodule of free Z-module
JO - Formalized Mathematics
PY - 2013
VL - 21
IS - 4
SP - 273
EP - 282
AB - In this article, we formalize a free Z-module and its property. In particular, we formalize the vector space of rational field corresponding to a free Z-module and prove formally that submodules of a free Z-module are free. Z-module is necassary for lattice problems - LLL (Lenstra, Lenstra and Lov´asz) base reduction algorithm and cryptographic systems with lattice [20]. Some theorems in this article are described by translating theorems in [11] into theorems of Z-module, however their proofs are different.
LA - eng
KW - free Z-module; submodule of free Z-module; free -module; submodule of free -module
UR - http://eudml.org/doc/267363
ER -
References
top- [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
- [2] Grzegorz Bancerek. Cardinal arithmetics. Formalized Mathematics, 1(3):543-547, 1990.
- [3] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990. Zbl06213858
- [4] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
- [5] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
- [6] Czesław Bylinski. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
- [7] Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1): 55-65, 1990.
- [8] Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
- [9] Czesław Bylinski. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
- [10] Czesław Bylinski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
- [11] Jing-Chao Chen. The Steinitz theorem and the dimension of a real linear space. Formalized Mathematics, 6(3):411-415, 1997.
- [12] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
- [13] Yuichi Futa, Hiroyuki Okazaki, and Yasunari Shidama. Z-modules. Formalized Mathematics, 20(1):47-59, 2012. doi:10.2478/v10037-012-0007-z.[Crossref] Zbl1276.94012
- [14] Yuichi Futa, Hiroyuki Okazaki, and Yasunari Shidama. Quotient module of Z-module. Formalized Mathematics, 20(3):205-214, 2012. doi:10.2478/v10037-012-0024-y.[Crossref] Zbl06213839
- [15] Yuichi Futa, Hiroyuki Okazaki, and Yasunari Shidama. Free Z-module. Formalized Mathematics, 20(4):275-280, 2012. doi:10.2478/v10037-012-0033-x.[Crossref] Zbl06213848
- [16] Yuichi Futa, Hiroyuki Okazaki, Daichi Mizushima, and Yasunari Shidama. Gaussian integers. Formalized Mathematics, 21(2):115-125, 2013. doi:10.2478/forma-2013-0013.[Crossref] Zbl1298.11009
- [17] Andrzej Kondracki. Basic properties of rational numbers. Formalized Mathematics, 1(5): 841-845, 1990.
- [18] Eugeniusz Kusak, Wojciech Leonczuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.
- [19] Rafał Kwiatek and Grzegorz Zwara. The divisibility of integers and integer relatively primes. Formalized Mathematics, 1(5):829-832, 1990.
- [20] Daniele Micciancio and Shafi Goldwasser. Complexity of lattice problems: a cryptographic perspective. 2002. Zbl1140.94010
- [21] Robert Milewski. Associated matrix of linear map. Formalized Mathematics, 5(3):339-345, 1996.
- [22] Konrad Raczkowski and Paweł Sadowski. Equivalence relations and classes of abstraction. Formalized Mathematics, 1(3):441-444, 1990.
- [23] Christoph Schwarzweller. The ring of integers, Euclidean rings and modulo integers. Formalized Mathematics, 8(1):29-34, 1999.
- [24] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1): 115-122, 1990.
- [25] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.
- [26] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.
- [27] Wojciech A. Trybulec. Linear combinations in vector space. Formalized Mathematics, 1(5):877-882, 1990.
- [28] Wojciech A. Trybulec. Basis of vector space. Formalized Mathematics, 1(5):883-885, 1990.
- [29] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
- [30] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
- [31] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.
- [32] Edmund Woronowicz and Anna Zalewska. Properties of binary relations. Formalized Mathematics, 1(1):85-89, 1990.
- [33] Mariusz Zynel. The Steinitz theorem and the dimension of a vector space. Formalized Mathematics, 5(3):423-428, 1996.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.