Torsion Z-module and Torsion-free Z-module
Yuichi Futa; Hiroyuki Okazaki; Kazuhisa Nakasho; Yasunari Shidama
Formalized Mathematics (2014)
- Volume: 22, Issue: 4, page 277-289
- ISSN: 1426-2630
Access Full Article
topAbstract
topHow to cite
topYuichi Futa, et al. "Torsion Z-module and Torsion-free Z-module." Formalized Mathematics 22.4 (2014): 277-289. <http://eudml.org/doc/271001>.
@article{YuichiFuta2014,
abstract = {In this article, we formalize a torsion Z-module and a torsionfree Z-module. Especially, we prove formally that finitely generated torsion-free Z-modules are finite rank free. We also formalize properties related to rank of finite rank free Z-modules. The notion of Z-module is necessary for solving lattice problems, LLL (Lenstra, Lenstra, and Lov´asz) base reduction algorithm [20], cryptographic systems with lattice [21], and coding theory [11].},
author = {Yuichi Futa, Hiroyuki Okazaki, Kazuhisa Nakasho, Yasunari Shidama},
journal = {Formalized Mathematics},
keywords = {free Z-module; rank of Z-module; homomorphism of Z-module; linearly independent; linear combination; free -module; rank of -module; homomorphism of -module},
language = {eng},
number = {4},
pages = {277-289},
title = {Torsion Z-module and Torsion-free Z-module},
url = {http://eudml.org/doc/271001},
volume = {22},
year = {2014},
}
TY - JOUR
AU - Yuichi Futa
AU - Hiroyuki Okazaki
AU - Kazuhisa Nakasho
AU - Yasunari Shidama
TI - Torsion Z-module and Torsion-free Z-module
JO - Formalized Mathematics
PY - 2014
VL - 22
IS - 4
SP - 277
EP - 289
AB - In this article, we formalize a torsion Z-module and a torsionfree Z-module. Especially, we prove formally that finitely generated torsion-free Z-modules are finite rank free. We also formalize properties related to rank of finite rank free Z-modules. The notion of Z-module is necessary for solving lattice problems, LLL (Lenstra, Lenstra, and Lov´asz) base reduction algorithm [20], cryptographic systems with lattice [21], and coding theory [11].
LA - eng
KW - free Z-module; rank of Z-module; homomorphism of Z-module; linearly independent; linear combination; free -module; rank of -module; homomorphism of -module
UR - http://eudml.org/doc/271001
ER -
References
top- [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
- [2] Grzegorz Bancerek. Cardinal arithmetics. Formalized Mathematics, 1(3):543-547, 1990.
- [3] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990. Zbl06213858
- [4] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
- [5] Czesław Bylinski. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
- [6] Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1): 55-65, 1990.
- [7] Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
- [8] Czesław Bylinski. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
- [9] Czesław Bylinski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
- [10] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
- [11] Wolfgang Ebeling. Lattices and Codes. Advanced Lectures in Mathematics. Springer Fachmedien Wiesbaden, 2013.
- [12] Yuichi Futa, Hiroyuki Okazaki, and Yasunari Shidama. Z-modules. Formalized Mathematics, 20(1):47-59, 2012. doi:10.2478/v10037-012-0007-z.[Crossref] Zbl1276.94012
- [13] Yuichi Futa, Hiroyuki Okazaki, and Yasunari Shidama. Quotient module of Z-module. Formalized Mathematics, 20(3):205-214, 2012. doi:10.2478/v10037-012-0024-y.[Crossref] Zbl06213839
- [14] Yuichi Futa, Hiroyuki Okazaki, and Yasunari Shidama. Free Z-module. Formalized Mathematics, 20(4):275-280, 2012. doi:10.2478/v10037-012-0033-x.[Crossref] Zbl06213848
- [15] Yuichi Futa, Hiroyuki Okazaki, Daichi Mizushima, and Yasunari Shidama. Gaussian integers. Formalized Mathematics, 21(2):115-125, 2013. doi:10.2478/forma-2013-0013.[Crossref] Zbl1298.11009
- [16] Yuichi Futa, Hiroyuki Okazaki, and Yasunari Shidama. Submodule of free Z-module. Formalized Mathematics, 21(4):273-282, 2013. doi:10.2478/forma-2013-0029.[Crossref] Zbl1298.13013
- [17] Andrzej Kondracki. Basic properties of rational numbers. Formalized Mathematics, 1(5): 841-845, 1990.
- [18] Eugeniusz Kusak, Wojciech Leonczuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.
- [19] Rafał Kwiatek and Grzegorz Zwara. The divisibility of integers and integer relatively primes. Formalized Mathematics, 1(5):829-832, 1990.
- [20] A. K. Lenstra, H. W. Lenstra Jr., and L. Lov´asz. Factoring polynomials with rational coefficients. Mathematische Annalen, 261(4), 1982.
- [21] Daniele Micciancio and Shafi Goldwasser. Complexity of lattice problems: a cryptographic perspective. The International Series in Engineering and Computer Science, 2002. Zbl1140.94010
- [22] Kazuhisa Nakasho, Yuichi Futa, Hiroyuki Okazaki, and Yasunari Shidama. Rank of submodule, linear transformations and linearly independent subsets of Z-module. Formalized Mathematics, 22(3):189-198, 2014. doi:10.2478/forma-2014-0021.[Crossref] Zbl1311.13009
- [23] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263-264, 1990.
- [24] Christoph Schwarzweller. The binomial theorem for algebraic structures. Formalized Mathematics, 9(3):559-564, 2001.
- [25] Christoph Schwarzweller. The ring of integers, Euclidean rings and modulo integers. Formalized Mathematics, 8(1):29-34, 1999.
- [26] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1): 115-122, 1990.
- [27] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.
- [28] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.
- [29] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.
- [30] Wojciech A. Trybulec. Operations on subspaces in vector space. Formalized Mathematics, 1(5):871-876, 1990.
- [31] Wojciech A. Trybulec. Basis of vector space. Formalized Mathematics, 1(5):883-885, 1990.
- [32] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
- [33] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1 (1):73-83, 1990.
- [34] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.