Torsion Z-module and Torsion-free Z-module

Yuichi Futa; Hiroyuki Okazaki; Kazuhisa Nakasho; Yasunari Shidama

Formalized Mathematics (2014)

  • Volume: 22, Issue: 4, page 277-289
  • ISSN: 1426-2630

Abstract

top
In this article, we formalize a torsion Z-module and a torsionfree Z-module. Especially, we prove formally that finitely generated torsion-free Z-modules are finite rank free. We also formalize properties related to rank of finite rank free Z-modules. The notion of Z-module is necessary for solving lattice problems, LLL (Lenstra, Lenstra, and Lov´asz) base reduction algorithm [20], cryptographic systems with lattice [21], and coding theory [11].

How to cite

top

Yuichi Futa, et al. "Torsion Z-module and Torsion-free Z-module." Formalized Mathematics 22.4 (2014): 277-289. <http://eudml.org/doc/271001>.

@article{YuichiFuta2014,
abstract = {In this article, we formalize a torsion Z-module and a torsionfree Z-module. Especially, we prove formally that finitely generated torsion-free Z-modules are finite rank free. We also formalize properties related to rank of finite rank free Z-modules. The notion of Z-module is necessary for solving lattice problems, LLL (Lenstra, Lenstra, and Lov´asz) base reduction algorithm [20], cryptographic systems with lattice [21], and coding theory [11].},
author = {Yuichi Futa, Hiroyuki Okazaki, Kazuhisa Nakasho, Yasunari Shidama},
journal = {Formalized Mathematics},
keywords = {free Z-module; rank of Z-module; homomorphism of Z-module; linearly independent; linear combination; free -module; rank of -module; homomorphism of -module},
language = {eng},
number = {4},
pages = {277-289},
title = {Torsion Z-module and Torsion-free Z-module},
url = {http://eudml.org/doc/271001},
volume = {22},
year = {2014},
}

TY - JOUR
AU - Yuichi Futa
AU - Hiroyuki Okazaki
AU - Kazuhisa Nakasho
AU - Yasunari Shidama
TI - Torsion Z-module and Torsion-free Z-module
JO - Formalized Mathematics
PY - 2014
VL - 22
IS - 4
SP - 277
EP - 289
AB - In this article, we formalize a torsion Z-module and a torsionfree Z-module. Especially, we prove formally that finitely generated torsion-free Z-modules are finite rank free. We also formalize properties related to rank of finite rank free Z-modules. The notion of Z-module is necessary for solving lattice problems, LLL (Lenstra, Lenstra, and Lov´asz) base reduction algorithm [20], cryptographic systems with lattice [21], and coding theory [11].
LA - eng
KW - free Z-module; rank of Z-module; homomorphism of Z-module; linearly independent; linear combination; free -module; rank of -module; homomorphism of -module
UR - http://eudml.org/doc/271001
ER -

References

top
  1. [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990. 
  2. [2] Grzegorz Bancerek. Cardinal arithmetics. Formalized Mathematics, 1(3):543-547, 1990. 
  3. [3] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990. Zbl06213858
  4. [4] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990. 
  5. [5] Czesław Bylinski. Binary operations. Formalized Mathematics, 1(1):175-180, 1990. 
  6. [6] Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1): 55-65, 1990. 
  7. [7] Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990. 
  8. [8] Czesław Bylinski. Partial functions. Formalized Mathematics, 1(2):357-367, 1990. 
  9. [9] Czesław Bylinski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990. 
  10. [10] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990. 
  11. [11] Wolfgang Ebeling. Lattices and Codes. Advanced Lectures in Mathematics. Springer Fachmedien Wiesbaden, 2013. 
  12. [12] Yuichi Futa, Hiroyuki Okazaki, and Yasunari Shidama. Z-modules. Formalized Mathematics, 20(1):47-59, 2012. doi:10.2478/v10037-012-0007-z.[Crossref] Zbl1276.94012
  13. [13] Yuichi Futa, Hiroyuki Okazaki, and Yasunari Shidama. Quotient module of Z-module. Formalized Mathematics, 20(3):205-214, 2012. doi:10.2478/v10037-012-0024-y.[Crossref] Zbl06213839
  14. [14] Yuichi Futa, Hiroyuki Okazaki, and Yasunari Shidama. Free Z-module. Formalized Mathematics, 20(4):275-280, 2012. doi:10.2478/v10037-012-0033-x.[Crossref] Zbl06213848
  15. [15] Yuichi Futa, Hiroyuki Okazaki, Daichi Mizushima, and Yasunari Shidama. Gaussian integers. Formalized Mathematics, 21(2):115-125, 2013. doi:10.2478/forma-2013-0013.[Crossref] Zbl1298.11009
  16. [16] Yuichi Futa, Hiroyuki Okazaki, and Yasunari Shidama. Submodule of free Z-module. Formalized Mathematics, 21(4):273-282, 2013. doi:10.2478/forma-2013-0029.[Crossref] Zbl1298.13013
  17. [17] Andrzej Kondracki. Basic properties of rational numbers. Formalized Mathematics, 1(5): 841-845, 1990. 
  18. [18] Eugeniusz Kusak, Wojciech Leonczuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990. 
  19. [19] Rafał Kwiatek and Grzegorz Zwara. The divisibility of integers and integer relatively primes. Formalized Mathematics, 1(5):829-832, 1990. 
  20. [20] A. K. Lenstra, H. W. Lenstra Jr., and L. Lov´asz. Factoring polynomials with rational coefficients. Mathematische Annalen, 261(4), 1982. 
  21. [21] Daniele Micciancio and Shafi Goldwasser. Complexity of lattice problems: a cryptographic perspective. The International Series in Engineering and Computer Science, 2002. Zbl1140.94010
  22. [22] Kazuhisa Nakasho, Yuichi Futa, Hiroyuki Okazaki, and Yasunari Shidama. Rank of submodule, linear transformations and linearly independent subsets of Z-module. Formalized Mathematics, 22(3):189-198, 2014. doi:10.2478/forma-2014-0021.[Crossref] Zbl1311.13009
  23. [23] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263-264, 1990. 
  24. [24] Christoph Schwarzweller. The binomial theorem for algebraic structures. Formalized Mathematics, 9(3):559-564, 2001. 
  25. [25] Christoph Schwarzweller. The ring of integers, Euclidean rings and modulo integers. Formalized Mathematics, 8(1):29-34, 1999. 
  26. [26] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1): 115-122, 1990. 
  27. [27] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990. 
  28. [28] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990. 
  29. [29] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990. 
  30. [30] Wojciech A. Trybulec. Operations on subspaces in vector space. Formalized Mathematics, 1(5):871-876, 1990. 
  31. [31] Wojciech A. Trybulec. Basis of vector space. Formalized Mathematics, 1(5):883-885, 1990. 
  32. [32] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990. 
  33. [33] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1 (1):73-83, 1990. 
  34. [34] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.