The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Non-triviality of the A -polynomial for knots in S 3 .”

Divisibility of twisted Alexander polynomials and fibered knots

Teruaki Kitano, Takayuki Morifuji (2005)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Similarity:

We prove that Wada’s twisted Alexander polynomial of a knot group associated to any nonabelian S L ( 2 , 𝔽 ) -representation is a polynomial. As a corollary, we show that it is always a monic polynomial of degree 4 g - 2 for a fibered knot of genus  g .

A twisted dimer model for knots

Moshe Cohen, Oliver T. Dasbach, Heather M. Russell (2014)

Fundamenta Mathematicae

Similarity:

We develop a dimer model for the Alexander polynomial of a knot. This recovers Kauffman's state sum model for the Alexander polynomial using the language of dimers. By providing some additional structure we are able to extend this model to give a state sum formula for the twisted Alexander polynomial of a knot depending on a representation of the knot group.

Positive knots, closed braids and the Jones polynomial

Alexander Stoimenow (2003)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Similarity:

Using the recent Gauß diagram formulas for Vassiliev invariants of Polyak-Viro-Fiedler and combining these formulas with the Bennequin inequality, we prove several inequalities for positive knots relating their Vassiliev invariants, genus and degrees of the Jones polynomial. As a consequence, we prove that for any of the polynomials of Alexander/Conway, Jones, HOMFLY, Brandt-Lickorish-Millett-Ho and Kauffman there are only finitely many positive knots with the same polynomial and no...

Minimal degree sequence for 2-bridge knots

Prabhakar Madeti, Rama Mishra (2006)

Fundamenta Mathematicae

Similarity:

We discuss polynomial representations for 2-bridge knots and determine the minimal degree sequence for all such knots. We apply the connection between rational tangles and 2-bridge knots.