-theory of the Navier-Stokes flow in the exterior of a moving or rotating obstacle
Geissert, M., Hieber, M.
Similarity:
Geissert, M., Hieber, M.
Similarity:
Peer Christian Kunstmann (2010)
Czechoslovak Mathematical Journal
Similarity:
We consider the Navier-Stokes equations in unbounded domains of uniform -type. We construct mild solutions for initial values in certain extrapolation spaces associated to the Stokes operator on these domains. Here we rely on recent results due to Farwig, Kozono and Sohr, the fact that the Stokes operator has a bounded -calculus on such domains, and use a general form of Kato’s method. We also obtain information on the corresponding pressure term.
Fan, Jishan, Ozawa, Tohru (2008)
Journal of Inequalities and Applications [electronic only]
Similarity:
M. Pulvirenti (2008)
Bollettino dell'Unione Matematica Italiana
Similarity:
This talk, based on a research in collaboration with E. Caglioti and F.Rousset, deals with a modified version of the two-dimensional Navier-Stokes equation wich preserves energy and momentum of inertia. Such a new equation is motivated by the occurrence of different dissipation time scales. It is also related to the gradient flow structure of the 2-D Navier-Stokes equation. The hope is to understand intermediate asymptotics.
Rainer Picard (2008)
Banach Center Publications
Similarity:
The classical Stokes system is reconsidered and reformulated in a functional analytical setting allowing for low regularity of the data and the boundary. In fact the underlying domain can be any non-empty open subset Ω of ℝ³. A suitable solution concept and a corresponding solution theory is developed.
Michael Wiegner (2003)
Banach Center Publications
Similarity:
Kwang-Ok Li, Yong-Ho Kim (2023)
Applications of Mathematics
Similarity:
This paper is concerned with the 3D inhomogeneous incompressible Navier-Stokes equations with damping. We find a range of parameters to guarantee the existence of global strong solutions of the Cauchy problem for large initial velocity and external force as well as prove the uniqueness of the strong solutions. This is an extension of the theorem for the existence and uniqueness of the 3D incompressible Navier-Stokes equations with damping to inhomogeneous viscous incompressible fluids. ...
Jishan Fan, Xuanji Jia, Yong Zhou (2019)
Applications of Mathematics
Similarity:
This paper proves a logarithmic regularity criterion for 3D Navier-Stokes system in a bounded domain with the Navier-type boundary condition.
Roger Temam, Xiaoming Wang (1997)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Similarity: