Ceva's and Menelaus' theorems for the -dimensional space.
Buba-Brzozowa, Malgorzata (2000)
Journal for Geometry and Graphics
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Buba-Brzozowa, Malgorzata (2000)
Journal for Geometry and Graphics
Similarity:
Koźniewski, Edwin, Górska, Renata A. (2000)
Journal for Geometry and Graphics
Similarity:
W. Dębski (1990)
Colloquium Mathematicae
Similarity:
David A. Edwards, Ondřej F. K. Kalenda, Jiří Spurný (2011)
Bulletin de la Société Mathématique de France
Similarity:
We provide a corrected proof of [1, Théorème 9] stating that any metrizable infinite-dimensional simplex is affinely homeomorphic to the intersection of a decreasing sequence of Bauer simplices.
D. W. Hajek (1986)
Matematički Vesnik
Similarity:
Paweł Szeptycki (1975)
Studia Mathematica
Similarity:
A. Błaszczyk, U. Lorek (1978)
Colloquium Mathematicae
Similarity:
Aarts J. M. (1971)
Colloquium Mathematicum
Similarity:
Yang, Shiguo, Cheng, Silong (2006)
JIPAM. Journal of Inequalities in Pure & Applied Mathematics [electronic only]
Similarity:
Karol Pąk (2010)
Formalized Mathematics
Similarity:
In this article we introduce and prove properties of simplicial complexes in real linear spaces which are necessary to formulate Sperner's lemma. The lemma states that for a function ƒ, which for an arbitrary vertex υ of the barycentric subdivision B of simplex K assigns some vertex from a face of K which contains υ, we can find a simplex S of B which satisfies ƒ(S) = K (see [10]).
Adam Idzik, Konstanty Junosza-Szaniawski (2006)
Discussiones Mathematicae Graph Theory
Similarity:
We formulate general boundary conditions for a labelling of vertices of a triangulation of a polyhedron by vectors to assure the existence of a balanced simplex. The condition is not for each vertex separately, but for a set of vertices of each boundary simplex. This allows us to formulate a theorem, which is more general than the Sperner lemma and theorems of Shapley; Idzik and Junosza-Szaniawski; van der Laan, Talman and Yang. A generalization of the Poincaré-Miranda theorem is also...
T. K. Pal, M. Maiti, J. Achari (1976)
Matematički Vesnik
Similarity:
Hertel, Eike (2000)
Beiträge zur Algebra und Geometrie
Similarity: