Galois module structure of Milnor -theory in characteristic .
Bhandari, Ganesh, Lemire, Nicole, Mináč, Ján, Swallow, John (2008)
The New York Journal of Mathematics [electronic only]
Similarity:
Bhandari, Ganesh, Lemire, Nicole, Mináč, Ján, Swallow, John (2008)
The New York Journal of Mathematics [electronic only]
Similarity:
Marius Van der Put (2004)
Annales de la Faculté des sciences de Toulouse : Mathématiques
Similarity:
G. D. Villa-Salvador, M. Rzedowski-Calderón (1997)
Revista Matemática de la Universidad Complutense de Madrid
Similarity:
For a prime number l and for a finite Galois l-extension of function fields L / K over an algebraically closed field of characteristic p <> l, it is obtained the Galois module structure of the generalized Jacobian associated to L, l and the ramified prime divisors. In the cyclic case an implicit integral representation of the Jacobian is obtained and this representation is compared with the explicit representation.
D. J. Burns (1989)
Journal de théorie des nombres de Bordeaux
Similarity:
D.S. Dummit (1983)
Journal für die reine und angewandte Mathematik
Similarity:
Stéphane Vinatier (2005)
Acta Arithmetica
Similarity:
Andrew Baker, Birgit Richter (2011)
Open Mathematics
Similarity:
We consider brave new cochain extensions F(BG +,R) → F(EG +,R), where R is either a Lubin-Tate spectrum E n or the related 2-periodic Morava K-theory K n, and G is a finite group. When R is an Eilenberg-Mac Lane spectrum, in some good cases such an extension is a G-Galois extension in the sense of John Rognes, but not always faithful. We prove that for E n and K n these extensions are always faithful in the K n local category. However, for a cyclic p-group , the cochain extension ...
Bart de Smit (2000)
Journal de théorie des nombres de Bordeaux
Similarity:
In this note we consider the index in the ring of integers of an abelian extension of a number field of the additive subgroup generated by integers which lie in subfields that are cyclic over . This index is finite, it only depends on the Galois group and the degree of , and we give an explicit combinatorial formula for it. When generalizing to more general Dedekind domains, a correction term can be needed if there is an inseparable extension of residue fields. We identify this correction...
Kay Wingberg (1985)
Compositio Mathematica
Similarity:
Jan Brinkhuis (1992)
Manuscripta mathematica
Similarity:
John Coates (1980-1981)
Séminaire Bourbaki
Similarity: