Displaying similar documents to “Galois module structure of Milnor K -theory mod p s in characteristic p .”

Galois module structure of generalized jacobians.

G. D. Villa-Salvador, M. Rzedowski-Calderón (1997)

Revista Matemática de la Universidad Complutense de Madrid

Similarity:

For a prime number l and for a finite Galois l-extension of function fields L / K over an algebraically closed field of characteristic p <> l, it is obtained the Galois module structure of the generalized Jacobian associated to L, l and the ramified prime divisors. In the cyclic case an implicit integral representation of the Jacobian is obtained and this representation is compared with the explicit representation.

Galois theory and Lubin-Tate cochains on classifying spaces

Andrew Baker, Birgit Richter (2011)

Open Mathematics

Similarity:

We consider brave new cochain extensions F(BG +,R) → F(EG +,R), where R is either a Lubin-Tate spectrum E n or the related 2-periodic Morava K-theory K n, and G is a finite group. When R is an Eilenberg-Mac Lane spectrum, in some good cases such an extension is a G-Galois extension in the sense of John Rognes, but not always faithful. We prove that for E n and K n these extensions are always faithful in the K n local category. However, for a cyclic p-group C p r , the cochain extension F ( B C p r + , E n ) F ( E C p r + , E n ) ...

The cyclic subfield integer index

Bart de Smit (2000)

Journal de théorie des nombres de Bordeaux

Similarity:

In this note we consider the index in the ring of integers of an abelian extension of a number field K of the additive subgroup generated by integers which lie in subfields that are cyclic over K . This index is finite, it only depends on the Galois group and the degree of K , and we give an explicit combinatorial formula for it. When generalizing to more general Dedekind domains, a correction term can be needed if there is an inseparable extension of residue fields. We identify this correction...