Displaying similar documents to “Fourier and Poisson transformation associated to a semisimple Symmetrie space.”

A classification of Poisson homogeneous spaces of complex reductive Poisson-Lie groups

Eugene Karolinsky (2000)

Banach Center Publications

Similarity:

Let G be a complex reductive connected algebraic group equipped with the Sklyanin bracket. A classification of Poisson homogeneous G-spaces with connected isotropy subgroups is given. This result is based on Drinfeld's correspondence between Poisson homogeneous G-spaces and Lagrangian subalgebras in the double D𝖌 (here 𝖌 = Lie G). A geometric interpretation of some Poisson homogeneous G-spaces is also proposed.

Quantization of pencils with a gl-type Poisson center and braided geometry

Dimitri Gurevich, Pavel Saponov (2011)

Banach Center Publications

Similarity:

We consider Poisson pencils, each generated by a linear Poisson-Lie bracket and a quadratic Poisson bracket corresponding to a so-called Reflection Equation Algebra. We show that any bracket from such a Poisson pencil (and consequently, the whole pencil) can be restricted to any generic leaf of the Poisson-Lie bracket. We realize a quantization of these Poisson pencils (restricted or not) in the framework of braided affine geometry. Also, we introduce super-analogs of all these Poisson...

Poisson–Lie sigma models on Drinfel’d double

Jan Vysoký, Ladislav Hlavatý (2012)

Archivum Mathematicum

Similarity:

Poisson sigma models represent an interesting use of Poisson manifolds for the construction of a classical field theory. Their definition in the language of fibre bundles is shown and the corresponding field equations are derived using a coordinate independent variational principle. The elegant form of equations of motion for so called Poisson-Lie groups is derived. Construction of the Poisson-Lie group corresponding to a given Lie bialgebra is widely known only for coboundary Lie bialgebras....