Average properties of random walks on Galton-Watson trees
Dayue Chen (1997)
Annales de l'I.H.P. Probabilités et statistiques
Similarity:
Dayue Chen (1997)
Annales de l'I.H.P. Probabilités et statistiques
Similarity:
Harry Kesten (1986)
Annales de l'I.H.P. Probabilités et statistiques
Similarity:
Ivan Kramosil (1987)
Kybernetika
Similarity:
Nina Gantert, Yueyun Hu, Zhan Shi (2011)
Annales de l'I.H.P. Probabilités et statistiques
Similarity:
Consider a discrete-time one-dimensional supercritical branching random walk. We study the probability that there exists an infinite ray in the branching random walk that always lies above the line of slope − , where denotes the asymptotic speed of the right-most position in the branching random walk. Under mild general assumptions upon the distribution of the branching random walk, we prove that when → 0, this probability decays like exp{−(+o(1)) / 1/2}, where is a positive constant...
Rathie, P.N., Zörnig, P. (2003)
International Journal of Mathematics and Mathematical Sciences
Similarity: