The effect of variational framework on the spectral asymptotics for nonlinear elliptic two-parameter problems
Tetsutaro Shibata (1999)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Similarity:
Tetsutaro Shibata (1999)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Similarity:
Thomas Kappeler (1991)
Annales de l'institut Fourier
Similarity:
In this article we prove that the fibration of by potentials which are isospectral for the 1-dimensional periodic Schrödinger equation, is trivial. This result can be applied, in particular, to -gap solutions of the Korteweg-de Vries equation (KdV) on the circle: one shows that KdV, a completely integrable Hamiltonian system, has global action-angle variables.
Mingarelli, Angelo B. (2004)
Electronic Journal of Differential Equations (EJDE) [electronic only]
Similarity:
T. Okamoto, K. Yajima (1985)
Annales de l'I.H.P. Physique théorique
Similarity:
Tanya Christiansen, Maciej Zworski (1995)
Annales de l'institut Fourier
Similarity:
The spectrum of the Laplacian on manifolds with cylindrical ends consists of continuous spectrum of locally finite multiplicity and embedded eigenvalues. We prove a Weyl-type asymptotic formula for the sum of the number of embedded eigenvalues and the scattering phase. In particular, we obtain the optimal upper bound on the number of embedded eigenvalues less than or equal to , where is the dimension of the manifold.