Spectral Theory for A (X).
C.M. Edwards (1974)
Mathematische Annalen
Similarity:
C.M. Edwards (1974)
Mathematische Annalen
Similarity:
D. Hinrichsen, A.J. Pritchard (1991/92)
Numerische Mathematik
Similarity:
Xiaogen Chen (2015)
Special Matrices
Similarity:
Let B2m denote the Brualdi-Li matrix of order 2m, and let ρ2m = ρ(B2m ) denote the spectral radius of the Brualdi-Li Matrix. Then [...] . where m > 2, e = 2.71828 · · · , [...] and [...] .
C. Bidard, M. Zerner (1991)
Mathematische Annalen
Similarity:
Ioana Cioranescu (1976)
Mathematische Annalen
Similarity:
D.C. LAY (1970)
Mathematische Annalen
Similarity:
Bernhard GRAMSCH, David LAY (1971)
Mathematische Annalen
Similarity:
Lihua You, Yujie Shu, Xiao-Dong Zhang (2016)
Czechoslovak Mathematical Journal
Similarity:
We obtain a sharp upper bound for the spectral radius of a nonnegative matrix. This result is used to present upper bounds for the adjacency spectral radius, the Laplacian spectral radius, the signless Laplacian spectral radius, the distance spectral radius, the distance Laplacian spectral radius, the distance signless Laplacian spectral radius of an undirected graph or a digraph. These results are new or generalize some known results.
John N. WELCH (1971)
Mathematische Annalen
Similarity:
William C. Lyford (1978)
Mathematische Annalen
Similarity:
Jorma K. Merikoski, Pentti Haukkanen, Mika Mattila, Timo Tossavainen (2018)
Special Matrices
Similarity:
Consider the recursion g0 = a, g1 = b, gn = gn−1 + gn−2, n = 2, 3, . . . . We compute the Frobenius norm of the r-circulant matrix corresponding to g0, . . . , gn−1. We also give three lower bounds (with equality conditions) for the spectral norm of this matrix. For this purpose, we present three ways to estimate the spectral norm from below in general.
M.J.J. Lennon (1974)
Mathematische Annalen
Similarity:
Zagorodnyuk, S. M. (2011)
Serdica Mathematical Journal
Similarity:
2000 Mathematics Subject Classification: 15A29. In this paper we introduced a notion of the generalized spectral function for a matrix J = (gk,l)k,l = 0 Ґ, gk,l О C, such that gk,l = 0, if |k-l | > N; gk,k+N = 1, and gk,k-N № 0. Here N is a fixed positive integer. The direct and inverse spectral problems for such matrices are stated and solved. An integral representation for the generalized spectral function is obtained.