Displaying similar documents to “On a Decay Property of Weak Solution for Semilinear Evolution Equation of Parabolic Type and Its Applications.”

Asymptotics of parabolic equations with possible blow-up

Radosław Czaja (2004)

Colloquium Mathematicae

Similarity:

We describe the long-time behaviour of solutions of parabolic equations in the case when some solutions may blow up in a finite or infinite time. This is done by providing a maximal compact invariant set attracting any initial data for which the corresponding solution does not blow up. The abstract result is applied to the Frank-Kamenetskii equation and the N-dimensional Navier-Stokes system with small external force.

Abstract methods in differential equations.

Herbert Amann (2003)

RACSAM

Similarity:

This is an expanded version, enriched by references, of my inaugural speech held on November 7, 2001 at the Real Academia de Ciencas Exactas, Físicas y Naturales in Madrid. It explains in a nontechnical way, accessible to a general scientific community, some of the motivation and basic ideas of my research of the last twenty years on a functional-analytical approach to nonlinear parabolic problems.

Lyapunov Functions for Weak Solutions of Reaction-Diffusion Equations with Discontinuous Interaction Functions and its Applications

Mark O. Gluzman, Nataliia V. Gorban, Pavlo O. Kasyanov (2015)

Nonautonomous Dynamical Systems

Similarity:

In this paper we investigate additional regularity properties for global and trajectory attractors of all globally defined weak solutions of semi-linear parabolic differential reaction-diffusion equations with discontinuous nonlinearities, when initial data uτ ∈ L2(Ω). The main contributions in this paper are: (i) sufficient conditions for the existence of a Lyapunov function for all weak solutions of autonomous differential reaction-diffusion equations with discontinuous and multivalued...

Time-dependent coupling of Navier–Stokes and Darcy flows

Aycil Cesmelioglu, Vivette Girault, Béatrice Rivière (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

A weak solution of the coupling of time-dependent incompressible Navier–Stokes equations with Darcy equations is defined. The interface conditions include the Beavers–Joseph–Saffman condition. Existence and uniqueness of the weak solution are obtained by a constructive approach. The analysis is valid for weak regularity interfaces.