On a Substitution Property of Modules.
L. Fuchs (1971)
Monatshefte für Mathematik
Similarity:
L. Fuchs (1971)
Monatshefte für Mathematik
Similarity:
J.D.P. Meldrum, J.H. Meyer (1991)
Monatshefte für Mathematik
Similarity:
Nguyen V. Dung, P.F. Smith (1992)
Mathematica Scandinavica
Similarity:
Andrzej Skowroński (1984)
Colloquium Mathematicae
Similarity:
K.R. Goodearl, P.C. Eklof, J. Trlifaj (1997)
Forum mathematicum
Similarity:
Maher Zayed (1990)
Monatshefte für Mathematik
Similarity:
Leonid A. Kurdachenko, Igor Ya. Subbotin, Vasyl A. Chupordia (2015)
Commentationes Mathematicae Universitatis Carolinae
Similarity:
A modular analogue of the well-known group theoretical result about finiteness of the derived subgroup in a group with a finite factor by its center has been obtained.
S. Ebrahimi Atani, S. Dolati Pishhesari, M. Khoramdel (2013)
Discussiones Mathematicae - General Algebra and Applications
Similarity:
We provide several characterizations and investigate properties of Prüfer modules. In fact, we study the connections of such modules with their endomorphism rings. We also prove that for any Prüfer module M, the forcing linearity number of M, fln(M), belongs to {0,1}.
L. Carlitz (1954)
Monatshefte für Mathematik
Similarity:
Morita, Kiiti (1971)
Mathematische Zeitschrift
Similarity:
Daniel Simson
Similarity:
CONTENTS1. Introduction.......................................................................................52. Traced rings and adjusted modules..................................................93. Moduled categories.........................................................................214. Triangular adjustments....................................................................325. Categories of matrices and -matrix modules...............436. Trace and cotrace reductions.........................................................477....
Manabu Harada (1972)
Publications du Département de mathématiques (Lyon)
Similarity:
Mikhail Khovanov, Radmila Sazdanovic (2015)
Fundamenta Mathematicae
Similarity:
We develop a diagrammatic categorification of the polynomial ring ℤ[x]. Our categorification satisfies a version of Bernstein-Gelfand-Gelfand reciprocity property with the indecomposable projective modules corresponding to xⁿ and standard modules to (x-1)ⁿ in the Grothendieck ring.
Manabu Harada (1974)
Publications du Département de mathématiques (Lyon)
Similarity: