Displaying similar documents to “Spectral asymptotics for nonlinear Sturm-Liouville problems.”

Spectral Theory of Singular Hahn Difference Equation of the Sturm-Liouville Type

Bilender P. Allahverdiev, Hüseyin Tuna (2020)

Communications in Mathematics

Similarity:

In this work, we consider the singular Hahn difference equation of the Sturm-Liouville type. We prove the existence of the spectral function for this equation. We establish Parseval equality and an expansion formula for this equation on a semi-unbounded interval.

A Sturm-Liouville problem with spectral and large parameters in boundary conditions and the associated Cauchy problem

Jamel Ben Amara (2011)

Colloquium Mathematicae

Similarity:

We study a Sturm-Liouville problem containing a spectral parameter in the boundary conditions. We associate to this problem a self-adjoint operator in a Pontryagin space Π₁. Using this operator-theoretic formulation and analytic methods, we study the asymptotic behavior of the eigenvalues under the variation of a large physical parameter in the boundary conditions. The spectral analysis is applied to investigate the well-posedness and stability of the wave equation of a string. ...

Some global results for nonlinear Sturm-Liouville problems with spectral parameter in the boundary condition

Ziyatkhan S. Aliyev, Gunay M. Mamedova (2015)

Annales Polonici Mathematici

Similarity:

We consider nonlinear Sturm-Liouville problems with spectral parameter in the boundary condition. We investigate the structure of the set of bifurcation points, and study the behavior of two families of continua of nontrivial solutions of this problem contained in the classes of functions having oscillation properties of the eigenfunctions of the corresponding linear problem, and bifurcating from the points and intervals of the line of trivial solutions.

The nonlinear limit-point/limit-circle problem for higher order equations

Miroslav Bartušek, Zuzana Došlá, John R. Graef (1998)

Archivum Mathematicum

Similarity:

We describe the nonlinear limit-point/limit-circle problem for the n -th order differential equation y ( n ) + r ( t ) f ( y , y ' , , y ( n - 1 ) ) = 0 . The results are then applied to higher order linear and nonlinear equations. A discussion of fourth order equations is included, and some directions for further research are indicated.