Displaying similar documents to “Numerical analysis of the adiabatic variable method for the approximation of the nuclear hamiltonian”

Zienkiewicz–Zhu error estimators on anisotropic tetrahedral and triangular finite element meshes

Gerd Kunert, Serge Nicaise (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

We consider a posteriori error estimators that can be applied to anisotropic tetrahedral finite element meshes, i.e. meshes where the aspect ratio of the elements can be arbitrarily large. Two kinds of Zienkiewicz–Zhu (ZZ) type error estimators are derived which originate from different backgrounds. In the course of the analysis, the first estimator turns out to be a special case of the second one, and both estimators can be expressed using some recovered gradient. The advantage of keeping...

Robust local problem error estimation for a singularly perturbed problem on anisotropic finite element meshes

Gerd Kunert (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

Singularly perturbed problems often yield solutions with strong directional features, e.g. with boundary layers. Such anisotropic solutions lend themselves to adapted, anisotropic discretizations. The quality of the corresponding numerical solution is a key issue in any computational simulation. To this end we present a new robust error estimator for a singularly perturbed reaction–diffusion problem. In contrast to conventional estimators, our proposal is suitable for anisotropic finite...

Fast and guaranteed a posteriori error estimator

Vejchodský, Tomáš

Similarity:

The equilibrated residual method and the method of hypercircle are popular methods for a posteriori error estimation for linear elliptic problems. Both these methods are intended to produce guaranteed upper bounds of the energy norm of the error, but the equilibrated residual method is guaranteed only theoretically. The disadvantage of the hypercircle method is its globality, hence slowness. The combination of these two methods leads to local, hence fast, and guaranteed a posteriori...

A posteriori error control for the Allen–Cahn problem : circumventing Gronwall’s inequality

Daniel Kessler, Ricardo H. Nochetto, Alfred Schmidt (2004)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

Phase-field models, the simplest of which is Allen–Cahn’s problem, are characterized by a small parameter ε that dictates the interface thickness. These models naturally call for mesh adaptation techniques, which rely on a posteriori error control. However, their error analysis usually deals with the underlying non-monotone nonlinearity via a Gronwall argument which leads to an exponential dependence on ε - 2 . Using an energy argument combined with a topological continuation argument and...