A posteriori error estimates for a discontinuous Galerkin approximation of Steklov eigenvalue problems

Yuping Zeng; Feng Wang

Applications of Mathematics (2017)

  • Volume: 62, Issue: 3, page 243-267
  • ISSN: 0862-7940

Abstract

top
We derive a residual-based a posteriori error estimator for a discontinuous Galerkin approximation of the Steklov eigenvalue problem. Moreover, we prove the reliability and efficiency of the error estimator. Numerical results are provided to verify our theoretical findings.

How to cite

top

Zeng, Yuping, and Wang, Feng. "A posteriori error estimates for a discontinuous Galerkin approximation of Steklov eigenvalue problems." Applications of Mathematics 62.3 (2017): 243-267. <http://eudml.org/doc/288205>.

@article{Zeng2017,
abstract = {We derive a residual-based a posteriori error estimator for a discontinuous Galerkin approximation of the Steklov eigenvalue problem. Moreover, we prove the reliability and efficiency of the error estimator. Numerical results are provided to verify our theoretical findings.},
author = {Zeng, Yuping, Wang, Feng},
journal = {Applications of Mathematics},
keywords = {discontinuous Galerkin method; Steklov eigenvalue problem; a posteriori error estimate},
language = {eng},
number = {3},
pages = {243-267},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A posteriori error estimates for a discontinuous Galerkin approximation of Steklov eigenvalue problems},
url = {http://eudml.org/doc/288205},
volume = {62},
year = {2017},
}

TY - JOUR
AU - Zeng, Yuping
AU - Wang, Feng
TI - A posteriori error estimates for a discontinuous Galerkin approximation of Steklov eigenvalue problems
JO - Applications of Mathematics
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 62
IS - 3
SP - 243
EP - 267
AB - We derive a residual-based a posteriori error estimator for a discontinuous Galerkin approximation of the Steklov eigenvalue problem. Moreover, we prove the reliability and efficiency of the error estimator. Numerical results are provided to verify our theoretical findings.
LA - eng
KW - discontinuous Galerkin method; Steklov eigenvalue problem; a posteriori error estimate
UR - http://eudml.org/doc/288205
ER -

References

top
  1. Ahn, H. J., 10.1090/qam/613954, Q. Appl. Math. 39 (1981), 109-117. (1981) Zbl0458.70018MR0613954DOI10.1090/qam/613954
  2. Ainsworth, M., 10.1137/060665993, SIAM J. Numer. Anal. 45 (2007), 1777-1798. (2007) Zbl1151.65083MR2338409DOI10.1137/060665993
  3. Ainsworth, M., Rankin, R., 10.1137/080725945, SIAM J. Numer. Anal. 47 (2010), 4112-4141. (2010) Zbl1208.65155MR2585181DOI10.1137/080725945
  4. Alonso, A., Russo, A. D., 10.1016/j.cam.2008.01.008, J. Comput. Appl. Math. 223 (2009), 177-197. (2009) Zbl1156.65094MR2463110DOI10.1016/j.cam.2008.01.008
  5. Andreev, A. B., Todorov, T. D., 10.1093/imanum/24.2.309, IMA J. Numer. Anal. 24 (2004), 309-322. (2004) Zbl1069.65120MR2046179DOI10.1093/imanum/24.2.309
  6. Antonietti, P. F., Buffa, A., Perugia, I., 10.1016/j.cma.2005.06.023, Comput. Methods Appl. Mech. Eng. 195 (2006), 3483-3503. (2006) Zbl1168.65410MR2220929DOI10.1016/j.cma.2005.06.023
  7. Armentano, M. G., 10.1051/m2an:2004002, M2AN, Math. Model. Numer. Anal. 38 (2004), 27-36. (2004) Zbl1077.65115MR2073929DOI10.1051/m2an:2004002
  8. Armentano, M. G., Padra, C., 10.1016/j.apnum.2007.01.011, Appl. Numer. Math. 58 (2008), 593-601. (2008) Zbl1140.65078MR2407734DOI10.1016/j.apnum.2007.01.011
  9. Arnold, D. N., Brezzi, F., Cockburn, B., Marini, L. D., 10.1137/S0036142901384162, SIAM J. Numer. Anal. 39 (2002), 1749-1779. (2002) Zbl1008.65080MR1885715DOI10.1137/S0036142901384162
  10. Babuška, I., Osborn, J., 10.1016/S1570-8659(05)80042-0, Handbook of Numerical Analysis. Volume II: Finite Element Methods (Part 1) (P. G. Ciarlet et al., eds.) North-Holland, Amsterdam (1991), 641-787. (1991) Zbl0875.65087MR1115240DOI10.1016/S1570-8659(05)80042-0
  11. Becker, R., Hansbo, P., Larson, M. G., 10.1016/S0045-7825(02)00593-5, Comput. Methods Appl. Mech. Eng. 192 (2003), 723-733. (2003) Zbl1042.65083MR1952357DOI10.1016/S0045-7825(02)00593-5
  12. Bergman, S., Schiffer, M., Kernel Functions and Elliptic Differential Equations in Mathematical Physics, Pure and Applied Mathematics 4, Academic Press, New York (1953). (1953) Zbl0053.39003MR0054140
  13. Bermúdez, A., Rodríguez, R., Santamarina, D., 10.1007/s002110000175, Numer. Math. 87 (2000), 201-227. (2000) Zbl0998.76046MR1804656DOI10.1007/s002110000175
  14. Bi, H., Li, H., Yang, Y., 10.1016/j.apnum.2016.02.003, Appl. Numer. Math. 105 (2016), 64-81. (2016) Zbl06576298MR3488074DOI10.1016/j.apnum.2016.02.003
  15. Bonito, A., Nochetto, R. H., 10.1137/08072838X, SIAM J. Numer. Anal. 48 (2010), 734-771. (2010) Zbl1254.65120MR2670003DOI10.1137/08072838X
  16. Braess, D., Fraunholz, T., Hoppe, R. H. W., 10.1137/130916540, SIAM J. Numer. Anal. 52 (2014), 2121-2136. (2014) Zbl1302.65239MR3249368DOI10.1137/130916540
  17. Bramble, J. H., Osborn, J. E., 10.1016/b978-0-12-068650-6.50019-8, The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations Proc. Sympos. Univ. Maryland, Baltimore, 1972, Academic Press, New York (1972), 387-408. (1972) Zbl0264.35055MR0431740DOI10.1016/b978-0-12-068650-6.50019-8
  18. Brenner, S. C., 10.1137/S0036142902401311, SIAM J. Numer. Anal. 41 (2003), 306-324. (2003) Zbl1045.65100MR1974504DOI10.1137/S0036142902401311
  19. Chen, L., Zhang, C., AFEM@matlab: a Matlab package of adaptive finite element methods, Technical report, University of Maryland at College Park (2006). (2006) 
  20. Clément, P., 10.1051/m2an/197509r200771, Rev. Franc. Automat. Inform. Rech. Operat. , Analyse numer., No. R-2 (1975), 77-84. (1975) Zbl0368.65008MR0400739DOI10.1051/m2an/197509r200771
  21. Conca, C., Planchard, J., Vanninathan, M., Fluids and Periodic Structures, Research in Applied Mathematics, Wiley, Chichester; Masson, Paris (1995). (1995) Zbl0910.76002MR1652238
  22. Dolejší, V., Šebestová, I., Vohralík, M., 10.1007/s10915-014-9921-2, J. Sci. Comput. 64 (2015), 1-34. (2015) Zbl1326.65147MR3353932DOI10.1007/s10915-014-9921-2
  23. Dörfler, W., 10.1137/0733054, SIAM J. Numer. Anal. 33 (1996), 1106-1124. (1996) Zbl0854.65090MR1393904DOI10.1137/0733054
  24. Ern, A., Proft, J., 10.1016/j.aml.2004.05.019, Appl. Math. Lett. 18 (2005), 833-841. (2005) Zbl1084.65092MR2145454DOI10.1016/j.aml.2004.05.019
  25. Garau, E. M., Morin, P., 10.1093/imanum/drp055, IMA J. Numer. Anal. 31 (2011), 914-946. (2011) Zbl1225.65107MR2832785DOI10.1093/imanum/drp055
  26. Giani, S., Hall, E. J. C., 10.1142/S0218202512500303, Math. Models Methods Appl. Sci. 22 (2012), 1250030, 35 pages. (2012) Zbl1257.65062MR2974168DOI10.1142/S0218202512500303
  27. Han, X., Li, Y., Xie, H., 10.4208/nmtma.2015.m1334, Numer. Math. Theory Methods Appl. 8 (2015), 383-405. (2015) Zbl1349.65603MR3395398DOI10.4208/nmtma.2015.m1334
  28. Hinton, D. B., Shaw, J. K., Differential operators with spectral parameter incompletely in the boundary conditions, Funkc. Ekvacioj, Ser. Int. 33 (1990), 363-385. (1990) Zbl0715.34133MR1086767
  29. Hoppe, R. H. W., Kanschat, G., Warburton, T., 10.1137/070704599, SIAM J. Numer. Anal. 47 (2008), 534-550. (2008) Zbl1189.65274MR2475951DOI10.1137/070704599
  30. Houston, P., Perugia, I., Schötzau, D., 10.1093/imanum/drl012, IMA J. Numer. Anal. 27 (2007), 122-150. (2007) Zbl1148.65088MR2289274DOI10.1093/imanum/drl012
  31. Houston, P., Schötzau, D., Wihler, T. P., 10.1142/S0218202507001826, Math. Models Methods Appl. Sci. 17 (2007), 33-62. (2007) Zbl1116.65115MR2290408DOI10.1142/S0218202507001826
  32. Karakashian, O. A., Pascal, F., 10.1137/S0036142902405217, SIAM J. Numer. Anal. 41 (2003), 2374-2399. (2003) Zbl1058.65120MR2034620DOI10.1137/S0036142902405217
  33. Karakashian, O. A., Pascal, F., 10.1137/05063979X, SIAM J. Numer. Anal. 45 (2007), 641-665. (2007) Zbl1140.65083MR2300291DOI10.1137/05063979X
  34. Li, Q., Lin, Q., Xie, H., 10.1007/s10492-013-0007-5, Appl. Math., Praha 58 (2013), 129-151. (2013) Zbl1274.65296MR3034819DOI10.1007/s10492-013-0007-5
  35. Li, Q., Yang, Y., 10.1007/s12190-010-0392-9, J. Appl. Math. Comput. 36 (2011), 129-139. (2011) Zbl1220.65160MR2794136DOI10.1007/s12190-010-0392-9
  36. Lin, Q., Xie, H., A multilevel correction type of adaptive finite element method for Steklov eigenvalue problems, Proceedings of the International Conference Applications of Mathematics, Praha (J. Brandts et al., eds.) Academy of Sciences of the Czech Republic, Institute of Mathematics, Praha (2012), 134-143. (2012) Zbl1313.65298MR3204407
  37. Perugia, I., Schötzau, D., 10.1090/S0025-5718-02-01471-0, Math. Comput. 72 (2003), 1179-1214. (2003) Zbl1084.78007MR1972732DOI10.1090/S0025-5718-02-01471-0
  38. Rivière, B., Wheeler, M. F., 10.1016/S0898-1221(03)90086-1, Comput. Math. Appl. 46 (2003), 141-163. (2003) Zbl1059.65098MR2015276DOI10.1016/S0898-1221(03)90086-1
  39. Romkes, A., Prudhomme, S., Oden, J. T., 10.1016/S0893-9659(03)00018-1, Appl. Math. Lett. 16 (2003), 447-452. (2003) Zbl1046.65089MR1983711DOI10.1016/S0893-9659(03)00018-1
  40. Russo, A. D., Alonso, A. E., 10.1016/j.camwa.2011.09.061, Comput. Math. Appl. 62 (2011), 4100-4117. (2011) Zbl1236.65142MR2859966DOI10.1016/j.camwa.2011.09.061
  41. Schneider, R., Xu, Y., Zhou, A., 10.1007/s10444-004-7619-y, Adv. Comput. Math. 25 (2006), 259-286. (2006) Zbl1099.65116MR2231704DOI10.1007/s10444-004-7619-y
  42. Scott, L. R., Zhang, S., 10.2307/2008497, Math. Comput. 54 (1990), 483-493. (1990) Zbl0696.65007MR1011446DOI10.2307/2008497
  43. Sun, S., Wheeler, M. F., 10.1007/s10915-004-4148-2, J. Sci. Comput. 22 (2005), 501-530. (2005) Zbl1066.76037MR2142207DOI10.1007/s10915-004-4148-2
  44. Tomar, S. K., Repin, S. I., 10.1016/j.cam.2008.08.015, J. Comput. Appl. Math. 226 (2009), 358-369. (2009) Zbl1163.65077MR2502931DOI10.1016/j.cam.2008.08.015
  45. Verfürth, R., A Review of a Posteriori Estimation and Adaptive Mesh-Refinement Techniques, Wiley-Teubner Series Advances in Numerical Mathematics, John Wiley, Chichester (1996). (1996) 
  46. Xie, H., 10.1093/imanum/drt009, IMA J. Numer. Anal. 34 (2014), 592-608. (2014) Zbl1312.65178MR3194801DOI10.1093/imanum/drt009
  47. Yang, J., Chen, Y., A unified a posteriori error analysis for discontinuous Galerkin approximations of reactive transport equations, J. Comput. Math. 24 (2006), 425-434. (2006) Zbl1142.76034MR2229721
  48. Yang, Y., Li, Q., Li, S., 10.1016/j.apnum.2009.04.005, Appl. Numer. Math. 59 (2009), 2388-2401. (2009) Zbl1190.65168MR2553141DOI10.1016/j.apnum.2009.04.005
  49. Zeng, Y., Chen, J., Wang, F., 10.4208/eajam.060415.230915a, East Asian J. Appl. Math. 5 (2015), 327-341. (2015) MR3421807DOI10.4208/eajam.060415.230915a

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.