Sylow 2-subgroups of simple groups
John G. Thompson (1966-1968)
Séminaire Bourbaki
Similarity:
John G. Thompson (1966-1968)
Séminaire Bourbaki
Similarity:
James Beidleman, Hermann Heineken (2003)
Bollettino dell'Unione Matematica Italiana
Similarity:
We describe the finite groups satisfying one of the following conditions: all maximal subgroups permute with all subnormal subgroups, (2) all maximal subgroups and all Sylow -subgroups for permute with all subnormal subgroups.
Rolf Brandl, Libero Verardi (1992)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
Vladimir O. Lukyanenko, Alexander N. Skiba (2010)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
Wenai Yan, Baojun Li, Zhirang Zhang (2013)
Colloquium Mathematicae
Similarity:
Let ℨ be a complete set of Sylow subgroups of a group G. A subgroup H of G is called ℨ-permutably embedded in G if every Sylow subgroup of H is also a Sylow subgroup of some ℨ-permutable subgroup of G. By using this concept, we obtain some new criteria of p-supersolubility and p-nilpotency of a finite group.
B. Hartley (1972)
Compositio Mathematica
Similarity:
Yangming Li (2010)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
James Beidleman, Mathew Ragland (2011)
Open Mathematics
Similarity:
The purpose of this paper is to study the subgroup embedding properties of S-semipermutability, semipermutability, and seminormality. Here we say H is S-semipermutable (resp. semipermutable) in a group Gif H permutes which each Sylow subgroup (resp. subgroup) of G whose order is relatively prime to that of H. We say H is seminormal in a group G if H is normalized by subgroups of G whose order is relatively prime to that of H. In particular, we establish that a seminormal p-subgroup is...
Lempken, Wolfgang, van Trung, Tran (2005)
Experimental Mathematics
Similarity: